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Abstract

This paper describes the problem of shape preserving approximation for
data with speci�ed tolerances� Using the tool of generalized B�splines �GB�
splines for short�� simple one� and three�point algorithms of shape preserving
local approximation with automatic choice of the tension parameters are de�
veloped� In the two�dimensional case� tensor products of one�dimensional
splines are employed� The results of numerical calculations are given�
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�� Introduction

The tool of generalized splines is widely used to solve shape preserving
interpolation problems �e�g�� see Boor� 	
��� Gregory� 	
�� Sakai and Silanes�
	
�� Beatson and Wolkowitz� 	
�
� Schaback� 	

��� By introducing tension
parameters into the spline structure� one can preserve various characteristics
of the initial data including positivity� convexity� linear and planar sections�
Here the main challenge is to develop algorithms that choose these parame�
ters automatically� The currently available algorithms �Miroshnichenko� 	
���
Sapidis et al�� 	
��� McCartin� 	

�� mainly make use of the piecewise rep�
resentation of splines� On the same basis� the problem of shape preserving
approximation �not interpolation� was treated in the work of Pruess �	
���
and Schmidt and Scholz �	

�� as spline smoothing�

The method of local approximation �Lyche and Schumaker� 	
���� com�
bined with recurrence algorithms for computing polynomial B�splines �Boor�
	
���� was found to be e�cient in practical applications� Such approximation
providing a variation diminishing property has many useful data shape pre�
serving properties �Schumaker� 	
�	�� However it gives a curve which only
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approximates the data� but changes the data shape substantially� For solv�
ing the shape preserving approximation problem� this approach was used in
�Grebennikov� 	
��� with rather theoretical algorithms for data re�nement�

The method of local approximation can be based on GB�splines� Until
recently� local support bases for computations with generalized splines have
been available only for some special types of splines �Boor� 	
��� Lyche and
Winther� 	
�
� Schumaker� 	
��� 	
��� Lyche� 	
��� Dyn and Ron� 	
����
This limited the choice of methods when using generalized splines� In �Koch
and Lyche� 	
�
� 	

	� 	

�� exponential GB�splines were introduced and
their application to interpolation problems was considered� Hyperbolic GB�
splines with tension were obtained in �Mar�usi�c� 	

�� In �Kvasov� 	

a� the
author constructed GB�splines allowing the tension parameters to vary from
interval to interval�

In practical calculations we usually treat data with speci�ed tolerances�
Therefore we should develop methods for constructing fair�shape�preserving
approximations which satisfy these tolerances and inherit geometric proper�
ties of the data� In this paper such a setting of the problem is formalized
by introducing the notion of a class of shape preserving functions� We devel�
op one� and three�point algorithms of shape preserving local approximation
based on GB�splines �Kvasov� 	

a� with automatic choice of the tension
parameters� We choose the tension parameters to satisfy the given tolerances
and the monotonicity and convexity conditions for the initial data� These al�
gorithms generalize the preliminary results of �Kvasov 	

c� 	

�� for shape
preserving splines�

In the approximation of surfaces the initial data is assumed to be given
as a set of pointwise�assigned non�intersecting curvilinear sections of a three�
dimensional solid� First� using the shape preserving interpolation algorithm
of �Kvasov� 	

b�� we construct a system of curves along the initial sections�
A two�dimensional surface spline is de�ned as the tensor product of one�
dimensional splines� generating a family of generalized local approximation
splines in the orthogonal direction� This yields a �nite system of curvilinear
coordinate lines on the surface which form a regular grid� Along those lines
we can preserve various properties of the initial data including convexity�
monotonicity� rectilinear and planar sections�

�� The Problem of Shape Preserving Approximation

Let the grid � � a � x� � x� � � � � � xN � b be given on the interval �a� b�
together with a set of intervals F � fFi j i � �� � � � � Ng� Fi � �fi � �i� fi � �i��
where �i � � are given small numbers� We want to construct a smooth
approximating function S � C��a� b�� such that S�xi� � Fi� i � �� � � � � N � and�
in addition� S preserves the shape of the initial data�

To formalize the problem let us introduce the notation

�iS � �S�xi���� S�xi���hi� hi � xi�� � xi� i � �� � � � � N � 	�

�iS � �iS ��i��S� i � 	� � � � � N � 	
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and use interval di�erences �Moor� 	
� Shokin� 	
�	�

�iF � h��i �Fi�� � Fi� � ��if � ei��if � ei�� ei � h��i ��i � �i����

i � �� � � � � N � 	�

�iF � �iF ��i��F � ��if �Ei� �if �Ei�� Ei � ei�� � ei�

i � 	� � � � � N � 	�

�a�� a��� �b�� b�� � �a� � b�� a� � b�� � �� provided that a� � b��

The initial data is non�negative �non�positive� on the interval �xR� xK ��
K � R� if Fi � � �Fi � ��� i � R� � � � �K� The initial data is said to be
monotonically increasing �monotonically decreasing� on the interval �xR� xK ��
K � R� if �iF � � ��iF � ��� i � R� � � � �K � 	� The data is called
convex downwards �upwards� in �xR� xK �� K � R � 	� if �iF � � ��iF � ���
i � R� 	� � � � � K � 	�

The intervals �iF � �iF are assumed to contain no zeros for any i� that
is� the initial data satis�es the constraints

��if�
� � e�i � i � �� � � � � N � 	� ��if�

� � E�
i � i � 	� � � � � N � 	� �	�

Geometrically� this means that neighbouring intervals do not intersect
�Fi �Fi�� � � for all i� and we cannot draw a straight line through any three
consecutive intervals Fj � j � i� 	� i� i� 	� i � 	� � � � � N � 	�

If the inequalities �	� are satis�ed in the entire interval �a� b�� then the
initial data uniquely de�nes the conditions of convexity and monotonicity of
the approximating function S� If� for the values of a certain function S� we
have S�xi� � Fi� i � �� � � � � N � then �iS � �iF � i � �� � � � � N � 	� �iS � �iF �
i � 	� � � � � N � 	� Bearing in mind the constraints on the initial data� we
obtain

�iS�if � �� i � �� � � � � N � 	� �iS �if � �� i � 	� � � � � N � 	� ���

De�nition �� A set of functions I��� F � is called a class of shape preserv�
ing functions if� for any function S � I��� F �� the following conditions are
satis�ed�

�i� S � C��a� b��

�ii� S�xi� � Fi� i � �� � � � � N �

�iii� S is monotone on �xi� xi���� i � 	� � � � � N � �� for �i��f�if � � and
�if�i��f � �� monotone on �x�� x�� for ��f��f � � and on �xN��� xN �
for �N��f�N��f � ��
S� has a change of sign on �xi��� xi���� i � 	� � � � � N�	� for�i��f�if � ��
the number of sign changes of S� on �a� b� is equal to the number of sign
changes in the sequence ��f���f� � � � ��N��f �



�iv� S���xi��if � �� i � 	� � � � � N � 	� the number of sign changes of the
function S�� on �a� b� is equal to the number of sign changes in the sequence
��f� ��f� � � � � �N��f �

Remark �� We do not give special consideration to the non�negative �non�
positive� approximation because we always obtain such data approximation
automatically just as a consequence of the approximation monotonicity�
Remark �� One needs to choose the values of the parameters �i so as to
obtain a balance between the exactness of approximation and the smoothness
of the curve�

The search for a function S � I��� F � is referred to as the problem of
shape preserving approximation� A solution to this problem will be sought in
the form of a tension generalized spline�

�� Tension Generalized Splines

Let a partition � � a � x� � x� � � � � � xN � b of the interval �a� b�
be given to which we associate a space of functions SG� whose restriction to
the subinterval �xi� xi���� i � �� � � � � N � 	 is spanned by the system of four
linearly independent functions f	� x��i��ig and where every function in SG�
has two continuous derivatives�

De�nition �� A tension generalized spline is a function S � SG� such that
�i	 for any x � �xi� xi���� i � �� � � � � N � 	

S�x� ��S�xi�� �i�xi�S
���xi���	� t� � �S�xi�����i�xi���S

���xi����t

��i�x�S
���xi� � �i�x�S

���xi���� ���

where t � �x � xi��hi� and the functions �i and �i are subject to the
constraints

�
�r�
i �xi��� � �

�r�
i �xi� � �� r � �� 	� �� ���i �xi� � ���i �xi��� � 	�

�ii	 S � C��a� b��

The functions �i and �i depend on the tension parameters which in�u�
ence the behaviour of S fundamentally� We call them the de�ning functions�
In practice� one takes

�i�x� � 	i�t�h
�
i � 
�pi� 	� t�h�i �

�i�x� � 
i�t�h
�
i � 
�qi� t�h

�
i � � � pi� qi �	�

���

In the limiting case when pi� qi 
 	 we require that limpi�� �i�pi� x� � ��
x � �xi� xi���� and limqi���i�qi� x� � �� x � �xi� xi���� so that the function
S in formula ��� is a linear function� Additionally� we require that if pi �
qi � � for all i we get a conventional cubic spline with 	i�t� � �	� t��� and

i�t� � t���
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Let us consider a basis for the space SG� consisting of functions with
local supports of minimum length Bi� i � �	� � � � � N �	� having the following
properties

Bi�x� � �� x � �xi��� xi����

Bi�x� � �� x �� �xi��� xi����

N��X
j	��

Bj�x� � 	� x � �a� b��

It was shown in �Kvasov� 	

a� that such splines� called GB�splines�
have the form

Bi�x� �

�����������������
����������������

�i���x�B
��

i �xi���� x � �xi��� xi����

x� yi��
yi � yi��

� �i���x�B
��

i �xi��� � �i���x�B
��

i �xi��

x � �xi��� xi��

yi�� � x

yi�� � yi
� �i�x�B

��

i �xi� � �i�x�B
��

i �xi����

x � �xi� xi����

�i���x�B
��

i �xi���� x � �xi��� xi����

�� otherwise�

���

where

yj � xj �
zj
z�j
� zrj � z

�r�
j �xj� � �

�r�
j���xj�� �

�r�
j �xj�� r � �� 	

and

B��i �xj� �
yi�� � yi��
z�j�

�

i���yj�
� j � i� 	� i� i� 	

with �i���x� � �x� yi����x� yi��x� yi����
Using the results of �Kvasov� 	

a� we can write down any spline S � SG�

as a linear combination of the GB�splines

S�x� �
N��X
j	��

bjBj�x� for x � �a� b� ��

with certain constant coe�cients bj �
In what follows we will only consider the case where the  averaged knots!

of GB�splines yi � xi�zi�z�i� i � �� � � � � N � coincide with the knots of the basic
grid �� that is� zi � �i���xi���i�xi� � �� i � �� � � � � N � and x�i � x�� ih��
xN�i � xN � ihN��� i � 	� �� �� Then according to ���� expression �� for the
spline S on the interval �xi� xi��� can be put in the form

S�x� � bi ��ib�x� xi� � �z�i�
���ib�i�x� � �z�i���

���i��b�i�x�� ���



where �jb � �jb��j��b� j � i� i� 	� �jb � �bj�� � bj��hj �
Whence we have the formulae

S�xi� � bi � �ibH
��
i � ��a�

S��xi� � �z�i�
����ib�

�

i���xi���i��b�
�

i�xi��� ��b�

S���xi� � �z�i�
���ib� ��c�

where

Hi �
��i���xi�

�i���xi�
�

��i�xi�

�i�xi�
�

Conversely

bi�� � S�xi�� hi��S
��xi� � "bi��S

���xi��

bi � S�xi�� �i�xi�S
���xi��

bi�� � S�xi� � hiS
��xi� � "aiS

���xi�� i � �� � � � � N

�
�

with the notation

"ai � ��i�xi�� hi�
�

i�xi�� "bi�� � ��i���xi� � hi���
�

i���xi��

The choice of the de�ning functions �i and �i will be subject to the
conditions ���� In addition� we will assume that dr
�q� t��dtr� r � �� 	� � are
non�negative monotone functions of their arguments q � �� � � t � 	� and
also 
�q� 	� � 
��q� 	� and 
�q� 	�� 
��q� 	��
�q� 	� are strictly monotonically
increasing functions of q�

�� A One�Point Algorithm of Shape Preserving Approximation

Algorithm �� Set bi � fi� i � �� � � � � N � in formula ��� The coe�cients b���
bN�� can be computed in various ways� depending on the particular problem
to be solved� For instance� they can be found from the boundary conditions
�Beatson and Chacko� 	
�
�� S��xi� � f �i � i � �� N � To �nd b��� bN�� one
can also apply other types of standard boundary conditions �Zavyalov et al��
	
����

The derivative values in the boundary conditions must be adjusted to the
behaviour of the data� Otherwise we can obtain an incompatibility with the
shape preserving restrictions� By this reason we will assume that they are
subject to the constraints

���f � f �����f � �� f ����f � ��

�f �N ��N��f��N��f � �� f �N�N��f � ��
�	��

�by hypothesis� ��f �� �� �N��f �� ��
By virtue of the condition zi � � or 
�qi��� 	�h

�
i�� � 
�pi� 	�h

�
i � i �

�� N � and the strict monotonicity of the function 
�q� 	�� it follows from the



p p g pp

equations h�� � h�� hN � hN�� that q�� � p�� qN�� � pN � Thus� adding
the �rst and third equations of �
�� for i � �� N � and taking into account the
boundary conditions we obtain

b�� � f� � �h�f
�

�� bN�� � fN�� � �hN��f
�

N � �		�

First we choose values for the parameters qi��� pi� i � 	� � � � � N � 	� so
that jS�xi�� fij � �i�

According to the formulae ��a� and ���

S�xi�� fi � �if

�

��qi��� 	�


�qi��� 	�

	

hi��
�

��pi� 	�


�pi� 	�

	

hi

�
��

� i � 	� � � � � N � 	� �	��

Since� when hi�� � hi the equation zi � � leads to the relation qi�� � pi� and
when hi�� � hi� we have qi�� � pi� equation �	�� provides a simple method
for choosing the parameters qi��� pi� For hi�� � hi due to the monotonicity
of the function 
��q� 	��
�q� 	� in the variable q we have

jS�xi�� fij � j�if j

��
	

hi��
�

	

hi

	

��qi��� 	�


�qi��� 	�

�
��

� �i�

Since for tension generalized splines the inequality 
��qi��� 	��
�qi��� 	� � �
is valid� we can de�ne qi�� by putting


��qi��� 	�


�qi��� 	�
� � � max

�
j�if jhi��hi
hi�� � hi

	

�i
� �� �

	
�

One �nds the value of pi from the condition zi � � or


�qi��� 	�h
�
i�� � 
�pi� 	�h

�
i � i � 	� � � � � N � 	�

The case hi � hi�� is analysed in the same way when pi � qi���
Similarly applying formula ��a� for i � �� N and using the boundary

conditions in the form of equations �		� for �nding p�� qN�� we have


��p�� 	�


�p�� 	�
� � � max

�
h�
��
j��f � f ��j � �� �

	
�


��qN��� 	�


�qN��� 	�
� � � max

�
hN��
�N

jf �N ��N��f j � �� �

	
�

Lemma �� If S���xi�S
���xi��� � � then the function S�� changes its sign

exactly once on the interval �xi� xi���� i � �� � � � � N � 	� Otherwise� S�� does
not change sign on �xi� xi��� at all�

Proof	 According to formulae ��� and ��c� for x � �xi� xi���

S���x� � S���xi��
��

i �x� � S���xi����
��

i �x�� �	��

By hypothesis� the function ���i �x� � � is monotonically decreasing ����i �x� � �
is monotonically increasing� for x � �xi� xi���� Hence for S���xi�S

���xi��� � ��
according to �	��� the sign of S���x� remains unchanged for x � �xi� xi����
When S���xi�S

���xi��� � �� since the derivative

d

dx
S���x� � S���xi��

���

i �x� � S���xi����
���

i �x�

is of constant sign� the function S�� is monotone in �xi� xi���� Thus it changes
sign just once there� This proves the lemma�



Theorem �� If the conditions �
�	 are satis�ed then the tension generalized
spline S constructed by the one�point local approximation algorithm 
 will be
a shape preserving function�

Proof	 According to ��c�� S���xi� � �z�i�
���if � i � 	� � � � � N � 	� Since z�i � �

�Kvasov� 	

b�� taking the conditions on the initial data �	� into account�
one has S���xi��if � �� i � 	� � � � � N � 	�

It follows from ��c� and �		� that S���x�� � �z���
����b � ��z���

�����f �
f ���� Thus by virtue of �		� we obtain S���x��S

���x�� � �� Similarly we have
S���xN���S

���xN � � �� Hence� it can be concluded on the basis of Lemma 	
that the number of sign changes of the function S�� on �a� b� is equal to that in
the sequence �if � i � 	� � � � � N � 	� Thus� conditions �iv� of De�nition 	 are
satis�ed�

We now consider a grid � � a � v� � v� � � � � � vN�� � b� Here for
S���xi�S

���xi��� � �� i � �� � � � � N � 	� we put vi�� � i�� � �xi� xi��� accord�
ing to the equation S�xi����S�xi� � S��i����xi���xi�� For S���xi�S

���xi���
� � we choose vi�� � x� from the condition S���x�� � �� x� � �xi� xi����

By construction� S���vj�S
���xi� � �� j � i� i � 	� From the conditions

on the initial data �	� and ��c� we have S���xi� �� �� i � �� � � � � N � Thus�
by Lemma 	� S�� does not change sign� and S�� accordingly� is monotone in
�vi� vi���� i � 	� � � � � N � 	� In �v�� v�� and �vN � vN���� the monotonicity of
S� follows from the inequalities S���xi�S

���xi��� � �� i � �� N � 	 and from
Lemma 	�

We will now show that the inequality S��x���if � � holds at any in�ec�
tion point x� � �xi� xi���� i � 	� � � � � N � �� By hypothesis� �if�i��f � � and
there are two possibilities� either �if�if � � or �if�if � ��

By ���� for x � �xi� xi���

S��x� � �if � �z�i�
���if�

�

i�x� � �z�i���
���i��f�

�

i�x��

where ��i�x� � � and ��i�x� � ��
Hence for �if�if � �� allowing for the signs of the functions ��i and ��i�

we have S��x��if � � and� therefore� S��vi����if � S��x���if � ��
Now let �if�if � �� Consider the case �if � �� Since the derivative

has an extremum at a point of in�ection� we have �iS � S��x��� From the
relation �iS�if � � of ���� we again arrive at the inequality S��x���if � ��
The case �if � � is analysed in a similar way�

Obviously by construction S��vi����if � � when S���xi�S
���xi��� � ��

i � �� � � � � N � 	� Thus� at the nodes of � we have S��vi����if � �� i �
�� � � � � N � 	�

We have proved that S� is monotone on �vj � vj���� j � i� i � 	� and
S��vi����if � �� Thus S� is monotone on �vi� vi���� Now if �jf�j��f � ��
j � i� 	� i� then S��vi�S

��vi��� � �� Thus� the sign of S� remains unchanged
on �vi� vi��� and� in particular� on �xi� xi���� Hence� under this assumption S
is monotone on �xi� xi���� i � 	� � � � � N � 	�

If ��f��f � � then a function S� which is monotone on �v�� v�� will
be of constant sign there� Thus S��x����f � �� We have already shown
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that S��x� is monotone on �x�� x��� According to �		�� f ����f � � and since
S��x����f � �� S is monotone on �x�� x��� The case of the interval �xN��� xN �
is considered in a similar manner�

Since S��x����f � �� S��vi����if � �� i � �� � � � � N � 	� S��xN ��N��f
� � and S� is monotone on �vi� vi���� i � �� � � � � N � the function S� changes
sign on �vi� vi��� and� therefore� on �xi��� xi���� i � 	� � � � � N � 	� if �i��f �
�if � �� The number of sign changes of the function S� on �a� b� is equal to
that in the sequence ��f���f� � � � ��N��f � This proves the theorem�


� A Three�Point Algorithm of Shape Preserving Approximation

Algorithm �� The coe�cients in �� are computed using formulae �
� where
S���xi� is approximated by the second divided di�erence�

bi � fi � ��hi�� � hi�
���i�xi��if� i � 	� � � � � N � 	� �	��

The coe�cients bi� i � �	� �� N�N � 	 are found by using boundary

conditions S�k��xi� � f
�k�
i � i � �� N � k � �� 	� One can also use other types

of expanded standard boundary conditions �Zavyalov et al�� 	
����
To adjust the values of the derivative in the boundary conditions with the

behaviour of the data� that is� with shape preserving restrictions� we subject
them to the constraints

��f���f � f ��� � j��f j��h
��
� � f ����f � ��

�N��f�f
�

N ��N��f� � j�N��f j�N��h
��
N��� f �N�N��f � ��

�	��

These conditions are more severe in comparison to the restrictions �	���
Using the boundary conditions� we can write out the explicit expressions

for the coe�cients bi� i � �	� �� N�N � 	� According to the formulae ��� and
�
� we obtain

b�� � b� � �h�f
�

��

b� � f� �
f� � h�f

�

� � b�
	� 
��p�� 	��
�p�� 	�

�

bN � fN �
fN � hN��f

�

N � bN��
	� 
��qN��� 	��
�qN��� 	�

�

bN�� � bN�� � �hN��f
�

N �

�	�

The parameters pi� qi� i � �� � � � � N � 	 are determined from the shape
preserving conditions of De�nition 	 in two steps� First� according to �	��
from the constraints

jbi � fij � �h�i �hi�� � hi�
��
�pi� 	�j�if j � �i� i � 	� � � � � N � 	 �	��

we �nd pi and compute qi�� from the relation zi � ��



The quantities p�� qN�� are chosen from the inequalities

jb� � f�j �
jf� � h�f

�

� � b�j

j	� 
��p�� 	��
�p�� 	�j
� ���

jbN � fN j �
jfN � hN��f

�

N � bN��j

j	� 
��qN��� 	��
�qN��� 	�j
� �N

�	��

using �	��
Finally� we �nd pi� qi from the constraints

jS�xi�� fij � �i� i � �� � � � � N�

From ��a� and �	�� we have

S�xi� � fi �H��
i



�

��i���xi���

�hi�� � hi���hi��
�i��f �

��i���xi���

hi�hi � hi���
�i��f

�

�
	 � �

�i�xi�

hi��hi
� �

��i���xi�� ��i�xi�

hi�� � hi

�
�if

�
�

�	
�

For tension generalized splines we have by virtue of the condition zi � �

�i���xi� � �i�xi� �
	


hi��hi�

� � ��i���xi�� ��i�xi� �
	

�
�hi�� � hi�

independently of the relations between hi�� and hi� Thus� using the estimate
�	��� we obtain from �	
�

jS�xi�� fij � H��
i �i � �i�

where �i � �i��h
��
i�� �

�
� j�if j� �i��h

��
i �

For hi�� � hi therefore� as in the algorithm 	� we �nd qi�� from the
relation


��qi��� 	�


�qi��� 	�
� � � max

�
hi��hi

hi�� � hi

�i
�i
� �� �

	
� i � �� � � � � N � �� ����

We compute pi from the condition zi � ��
For i � 	� N�	� bearing �	� and �	�� in mind� we de�ne the parameters

q� and pN�� similarly� In particular� for h� � h� and hN�� � hN�� we have


��q�� 	�


�q�� 	�
� � � max

�
h�h�

h� � h�

#��
��
� �� �

	
�


��pN��� 	�


�pN��� 	�
� � � max

�
hN��hN��

hN�� � hN��

#�N��
�N��

� �� �

	
�
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where

#�� � ��h
��
� �

�

�
j��f j�

j��f � f ��j� ��h
��
�

j	� 
��p�� 	��
�p�� 	�j
�

#�N�� � �N��h
��
N�� �

�

�
j�N��f j�

j�N��f � f �N j� �N��h
��
N��

j	� 
��qN��� 	��
�qN��� 	�j
�

Theorem �� If the conditions �
�	 are satis�ed then the tension generalized
spline S constructed by the three�point local approximation algorithm  will
be a shape preserving function�

Proof	 By virtue of the conditions on the initial data �	� and ���� the esti�
mates �	�� and �	�� imply the relations

�ib�if � �� i � �� � � � � N � 	�

��ib��i��b��if � �� i � 	� � � � � N � 	�
��	�

Whence� according to ��c�� S���xi��if � �� i � 	� � � � � N � 	� From ��c� and
�	� we also have

S���x�� � �z���
�����b����b� � �h���

b� � f� � h�f
�

��


�p�� 	�� 
��p�� 	�
�

If ��f � �� then according to �	�� f �� � ��f � ��h
��
� � Thus� taking into

account �	�� we obtain

b� � f� � h�f
�

� � b� � f� � h���f � �� � b� � f� � ���

As for tension generalized splines the estimate 
�q� 	� � 
��q� 	� is valid for
all q � � then S���x�� � �� that is� S���x��S

���x�� � �� The same inequality
applies in the case ��f � �� The estimate S���xN���S

���xN � � � is established
in the same way� Now applying Lemma 	� we �nd that conditions �iv� of
De�nition 	 for shape preserving functions are satis�ed�

Since inequalities ��	� are satis�ed� the conditions of part �iii� of De�ni�
tion 	 can be veri�ed as in the corresponding proof of Theorem 	� This proves
the theorem�

Remark �� For f�x� � 	� f�x� � x� we �nd in both the one�point algorithm
	 and the three�point algorithms � by direct veri�cation that� respectively�
bi � 	� bi � xi� i � �	� � � � � N � 	 and� therefore� according to ���� a shape
preserving spline S recovers straight lines�

Remark �� For pi � qi � � for all i the equations zi � �� i � 	� � � � � N�	 are
only possible for a uniform grid �� In that case� by �	�� we obtain the well�
known three�point scheme for local approximation by cubic splines �Zavyalov
et al�� 	
����



�� Shape Preserving Surface Approximation

Let the domain G � �c� d� � ��� 	� in the WU plane be divided into N
rectangular subdomains by the straight lines w � wi� i � �� � � � � N � of the
grid �w � c � w� � w� � � � � � wN � d� Suppose that on each of the lines
w � wi the grid �i

u � � � ui� � ui� � � � � � uiMi
� 	� i � �� � � � � N � is given�

The number of nodes and their position for the grids �i
u� i � �� � � � � N � are

independent of one another� At nodes uij � j � �� � � � �Mi� i � �� � � � � N � the
values fij of a certain function f are given with allowable deviations �ij �

The algorithms of local spline approximation of Sections � and � can
be generalized so that a surface of class C����G� passing through the points
Pij � �wi� u

i
j�

#fij�� where #fij � �fij��ij � fij��ij �� j � �� � � � �Mi� i � �� � � � � N �
can be constructed� As well as being e�cient� these algorithms preserve the
shape of the data�

The surface is sought in the form of the function

S�w� u� �
N��X
i	��

bi�u�Bi�w��

where the GB�splines Bi are the same as in ��� The functions bi� i �
�	� � � � � N�	� generalize the formulae of local approximation of Sections � and
� �Algorithms 	 and ��� being linear combinations of one�dimensional shape
preserving interpolating splines Si� i � �� � � � � N �Kvasov� 	

b� which �x
the curves along sections w � wi� i � �� � � � � N � and pass through the points
�uij � fij�� j � �� � � � �Mi�

Formally� the required formulae �Algorithms � and �� are obtained by

replacing the quantities f
�k�
j in Algorithms 	 and �� respectively� by the func�

tions S
�k�
j � k � �� 	� �� The boundary conditions are changed similarly� In the

case of the  one�point! scheme we use the boundary conditions� �
�wS�wi� u� �

�
�wf�wi� u�� i � �� N � For the  three�point! scheme these boundary conditions
must be supplemented by the conditions S�wi� u� � Si�u�� i � �� N � Since
the formulae for the functions bi� i � �	� � � � � N � 	� are a direct generaliza�
tion of the local approximation formulae of Sections � and �� we will con�ne
our analysis to a short description of the algorithms� We use the notation
gi�u� �

�
�wf�wi� u�� i � �� N �

Algorithm �� The one�point scheme�

b���u� � S��u�� �h�g��u��

bi�u� � Si�u�� i � �� � � � � N�

bN���u� � SN���u� � �hN��gN �u��

����

Algorithm �� The three�point scheme�

b���u� � b��u�� �h�g��u��

b��u� � S��u��
S��u� � h�g��u�� b��u�

	� 
��p�� 	��
�p�� 	�
�
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bi�u� � Si�u�� ��hi�� � hi�
���i�wi��iS�u�� i � 	� � � � � N � 	�

bN �u� � SN �u��
SN �u�� hN��gN �u�� bN���u�

	� 
��qN��� 	��
�qN��� 	�
�

bN���u� � bN���u� � �hN��gN �u��

����

where
�iS�u� � �iS�u���i��S�u��

�jS�u� � �Sj���u�� Sj�u���hj � j � i� 	� i�

The boundary conditions can be computed using second� and third�degree
one�parameter Lagrange interpolating polynomials� Corresponding to the
shape preserving constraints �	��� �	�� �Kvasov� 	

b�� we set

g��u� �

���
��

�
�w

L����w�� u� if �
�w

L����w�� u���S�u� � �� ��S�u� �� ��
�
�wL����w�� u� if �

�wL����w�� u���S�u� � �� ��S�u� � ��

�� otherwise�

gN �u� �

�������
������

�
�w

L��N���wN � u� if �
�w

L��N���wN � u��N��S�u� � ��

�N��S�u� �� ��
�
�w

L��N���wN � u� if �
�w

L��N���wN � u��N��S�u� � ��

�N��S�u� � ��

�� otherwise�

����

where

L��i�w� u� � Si�u� � �w � wi���iS�u� � �w � wi����i��S�u���wi�� � wi���

L��i�w� u� � �L��i�w� u��wi�� � w� � L��i���w� u��w � wi����wi�� � wi��

Instead of gi� i � �� N � we could consider the interpolating shape preserv�
ing splines �Kvasov� 	

b� constructed from given values of �f�wj� u

i
j���w�

j � �� � � � �Mi� i � �� N �
In practice� it is often necessary to adjust the assigned values of fij on

an initial irregular grid to the nodes of a regular grid in domain G� that is�
to points � #wn� #um�� m � �� � � � � #M � n � �� � � � � #N � In that case it is su�cient
to know the quantities gj�#um�� m � �� � � � � #M � j � �� N � which can be found
from formulae �����

The shape preserving spline S possesses the following data shape pre�
serving properties�
Property �� Let the functions Sj � j � i � 	� � � � � i � �� 	 � i � N � ��
be monotone and$or convex in the interval �#um� #um���� Then the generalized
spline S constructed by Algorithm � for any �xed #w � �wi� wi��� will be
monotone and$or convex on �#um� #um����
Property �� Let the functions Sj � j � i � 	� � � � � i � �� 	 � i � N�	� be
monotone and$or convex in the interval �#um� #um��� and satisfy the conditions

S
�k�
j �

�k�
j f � �� j �� �� N� S

�k�
j g

�k�
j � �� j � �� N�



where� respectively� k � 	 and$or k � �� Then the generalized spline S
constructed by Algorithm � for any �xed #w � �wi� wi���� � � i � N � �� will
be monotone and$or convex on �#um� #um����

These assertions can be proved by using the formulae

�k

�uk
S�w� u� �

N��X
i	��

b
�k�
i �u�Bi�w�� k � 	� ��

employing expressions ���� and ���� for the coe�cients bi and taking into
account the fact that GB�splines are �nite� Bi�w� � � for w � �wi��� wi���
and Bi�w� � � for w �� �wi��� wi����

Property �� Suppose that for any #Sj�u� for which �i
#S�u�� �i #S�u� do not

change sign for any u � ��� 	�� the choice of parameters pi� qi� i � ��� � � � � N���
of the generalized spline S� gives

j #Sj�u�� Sj�u�j � Ej�u�� j � �� � � � � N�

where Ej are given functions� Then for any �xed u the spline Su�w� � S�w� u�
is a shape preserving function�

The proof follows from the arguments for one�dimensional local approxi�
mation splines given above�

The values of the spline S are computed most e�ciently� in the sense
that the minimum number of arithmetic operations are performed� when the
regular resultant grid mentioned above is used� In that case we �rst �nd
the coe�cients bi�#um�� i � �	� � � � � N � 	� and then the values S� #wn� #um��
n � �� � � � � #N � m � �� � � � � #M using the formulae for GB�splines�

A non�single�valued shape preserving surface� assigned pointwise in the
form of a family of� generally speaking� curvilinear non�intersecting sections
can be constructed by introducing the standard parametrization�

x � Sx�w� u�� y � Sy�w� u�� z � Sz�w� u�� ����

In this case the initial points Tij � �xij� yij � zij�� j � �� � � � �Mi� i � �� � � � � N �
are assumed to belong to the parallelepiped

Q
ij � f#�ij jj#�ij � �ij j � ��ijg�

where for each of the coordinate functions ���� we have put �ij � ��wi� uj��
and ��ij is the allowable error with respect to the corresponding variable� The
resultant surface will be obtained as a triple of shape preserving splines con�
structed using the above algorithm�

The algorithms given here can be classed as Gordon type algorithms
�Faux and Pratt� 	
�
� Gordon� 	

�� with the essential di�erence� however�
that instead of the functions bi� i � �� � � � � N � being  blended! there with the
help of fundamental splines� a local approximation of those functions is used
and the surface is constructed in the space of shape preserving splines�
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�� Numerical Examples

The approximating generalized splines were proved to be shape preserv�
ing under constraints �	� on the initial data which are required in order to
have unique monotonicity and convexity conditions� In fact� the algorithms
work well with more general data� as the examples below show� The reason
is as follows� Using the algorithms we always satisfy the given tolerances�
If the algorithms fail in the data monotonicity and$or convexity on some
intervals then we have to increase the values of the corresponding tension pa�
rameters or to vary the tolerance parameters �i� This provides the properties
of monotonicity and convexity for any data� However in the �rst case the
resulting curve can be rather  angular!� To avoid this situation it is often
better to increase the values of the parameters �i which control the shape of
the resulting curve and apply the algorithms repeatedly� This permits us to
in�uence the  smoothness! of the resulting curve and yet remain within the
given tolerances�

The use of tension generalized splines in the approximation of pointwise
given curves and surfaces is illustrated in the �gures� The de�ning functions
were taken in the form ��� with


�qi� t� � Qit
���	 � qit�	� t��� Q��i � ��	 � qi��� � qi�

which corresponds to rational splines with quadratic denominator� Other
examples of de�ning functions for rational� exponential� hyperbolic splines
and splines with additional knots can be found in �Kvasov� 	

a��

The more exact three�point formulae of local approximation �Algorithms
� and �� were used in each case� To �nd qi�� we apply the formula ���� which
takes the form

qi�� � max
� hi��hi
hi�� � hi

�i
�i
� �� �


�

Since we suppose hi�� � hi� then the relation zi � � gives us

pi � �� �
h
	 � �	 � qi����� � qi���

� hi
hi��

i���
� ��

For comparison� the standard cubic spline interpolation of �Zavyalov et al��
	
��� was used on the same data �in our case with pi � qi � � for all i�� The
derivatives at the endpoints were computed using second�degree Lagrange
polynomials� S��x�� � IL�����x��� S

��xN � � IL���N���xN �� and then corrected
in accordance with the shape preserving conditions �	�� �for surfaces� ������
The tolerance from the initial data was 	�%� The solid and dashed curves in
the �gures 	&� denote the graphs of a rational spline S and a cubic spline S��
The crosses indicate the initial points�

Figure 	a illustrates the approximation of the single pulse function f�x� �
max��� 	��jx�	���j� from points xi � 	�����i� i � �� � � � � � The cubic spline
here is typi�ed by the presence of oscillations� At the same time� the shape



�a� �b�

Fig� 	� Pro�les of interpolation and shape preserving splines� �a� Appro�
ximation of a unit�pulse function� �b� data obtained by Sp'ath �	

��

preserving spline is insensitive to these bursts� The  radius of curvature! of
the corners can be in�uenced here by changing �i�

The data for Figs� 	b and � �Tables 	 and �� are taken from �Sp'ath� 	

�
	
���� The cubic spline in Fig� 	b has super�uous points of in�ection in the
�rst� third� fourth and eighth intervals� The shape preserving spline does not
have these oscillations� Figures � re�ect the same general tendencies in the
behaviour of the splines S� and S� By reducing �i where necessary the curve
can be further  �tted! to the data �Fig� �b�� but becomes more  angular!�

Table �� Data for Figure 	b�

xi ��� 	�� 	�� ��� ��� ��� ��� �� ��� 	���

fi 	��� ��� ��� ��� ��� ��� �� ��	 ��� ���

Table �� Data for Figure ��

xi � ��� ��� ��� ��� �� � ��� 	�

fi � ��� ��� ��� ��� 	�� 	 ��� �

The next test used a function with a discontinuous derivative obtained by
joining intervals of a straight line and a semicircle� f�x� � 	��	� �x��������

for jx � �j � 	 and f�x� � 	 otherwise� From a geometrical point of view
the curve of the interpolating cubic spline is invalid� whereas here the shape
preserving spline gives a perfect pro�le �Fig� �a��

The case of a quarter circle combined with a straight�line segment is
considered in Fig� �b� Here the curvature at the join is discontinuous� The
vertical tangent at the left�hand boundary was approximated by the value
S��a� � ��� From the geometric point of view again the cubic interpolant is
far from satisfactory� whereas even here the shape preserving spline gives no
oscillations� automatically correcting the boundary conditions�

In many studies of shape preserving interpolation� tests are made using
the data of Akima �	
����
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�a� �b�

Fig� �� Data obtained by Sp'ath �	
���� Variation of the shape
preserving curve with decreasing tolerance parameters �i�

�a� �b�

Fig� �� Joining of a part of the circle with line segments�
�a� Semicircle� �b� one quadrant of a circle�

Table �� Data for Figure �a�

xi � � � �  � 
 		 	� 	� 	�

fi 	� 	� 	� 	� 	� 	� 	��� 	� � � ��

The pro�les of the splines S� and S obtained for this data are shown in
Fig� �a� On the  high gradient! interval� the tolerance from the initial data
was increased to the maximum� �
 � 	�� �� � �� � � � � with �i � 	 at all
other points�

Figure �b shows the results for the data taken from �Fritsch and Carlson�
	
���� fxig � f��

� ���
� ��	
� ���� 
��� 	�� 	�� 	�� ��g� ffig � f�� �����
E���
�����
�E � �� ��	
	��� ���
���� ��
������ ��

��� ��



	� ��




�g�
Here �i � ��	 for all i�



�a� �b�

Fig� �� Typical behaviour of interpolation and shape preserving
splines� given fast� and slow�change sections of data� �a� Data obtained
by Akima �	
���� �b� data obtained by Fritsch and Carlson �	
����

As a numerical test of the two�dimensional algorithm � of shape preserv�
ing approximation� we tried to reconstruct the surface of a  Viking boat!�
The initial data� which the author obtained from Professor Tom Lyche of
Oslo University� was de�ned pointwise in the form of the envelopes of the
sides and the keel of the boat� as well as six ribs� Three�dimensional view of
the data is given in Figure �� After partial selection of the data� a system of
non�intersecting� generally speaking curvilinear� pointwise assigned loft sec�
tions was constructed from this data� Each section� except the sections for
ribs� contained � points�

Fig� �� Three�dimensional view of the data�
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Fig� � Resulting shape preserving surface�



First� using the shape preserving interpolation algorithm of �Kvasov�
	

b� we construct a system of space curves along the selected sections�
A two�dimensional spline is de�ned as the tensor product of one�dimensional
splines� generating a family of generalized local approximation splines in the
orthogonal direction by algorithm �� This yields a �nite system of curvilinear
coordinate lines on the surface which form a regular grid� Properties of the
initial data such as convexity� monotonicity� the presence of linear and plane
segments� angles and non�smoothness are preserved along those lines�

The Euler coordinates of the multi�valued shape preserving surface were
computed by the standard parametrization ����� In Figure  the resulting
shape preserving surface is given with a mesh of lines 	��� 	���
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