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Abstract. This paper addresses a new approach in solving the pro-
blem of shape preserving spline interpolation. Based on the formula-
tion of the latter problem as a differential multipoint boundary value
problem for hyperbolic and biharmonic tension splines we consider its
finite-difference approximation. The resulting system of linear equa-
tions can be efficiently solved either by direct (Gaussian elimination)
and iterative methods (successive over-relaxation (SOR) method and
finite-difference schemes in fractional steps). We consider the basic
computational aspects and illustrate the main advantages of this orig-
inal approach.
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§1. Introduction

Spline theory is mainly grounded on two approaches: the algebraic one
(where splines are understood as smooth piecewise functions, see, e.g.,
[19]) and the variational one (where splines are obtained via minimization
of quadratic functionals with equality and/or inequality constraints, see,
e.g., [13]). Although less common, a third approach [8], where splines are
defined as the solutions of differential multipoint boundary value problems
(DMBVP for short), has been considered in [3,11,12] and closely relates to
the idea of polysplines [10]. Even though some of the important classes
of splines can be obtained from all three schemes, specific features some-
times make the last one an important tool in practical settings. We want
to illustrate this fact by the examples of interpolating hyperbolic and bi-
harmonic tension splines. Introduced by Schweikert in 1966 [20] hyperbolic
tension splines are still very popular [9,15,16,17,18]. Earlier biharmonic
(thin plate) tension splines were considered in [2,4,5,7,12], etc.
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Z D. 1. ANVASOV

For the numerical treatment of a DMBVP we replace the differential
operator by its finite-difference approximation. This gives us a linear sys-
tem of difference equations with a matrix of special structure. The latter
system can be efficiently treated by the Gaussian elimination or by iter-
ative methods such as SOR iterative method or finite-difference schemes in
fractional steps [21]. We present numerical examples illustrating the main
features of this approach.

The content of this paper is as follows. In Section 2 we formulate the
1-D problem. In Section 3 we prove the existence of a mesh solution by
constructing its extension as a discrete hyperbolic tension spline. Section
4, with its subsections, is devoted to the discussion of practical aspects
and computational advantages of our discrete spline. In Sections 5 and 6
we formulate the 2-D problem and give its finite-difference approximation.
The algorithm for the numerical solution of 2-D problem is described in
section 7. Section 8 gives the SOR iterative method. In section 9 we
consider a finite-difference scheme in fractional steps and treat its ap-
proximation and stability properties. Finally, Section 10 provides some
graphical examples to illustrate the main properties of discrete hyperbolic
and biharmonic tension splines.

§2. 1-D DMBVP. Finite Difference Approximation

Let the data
(l‘i,fi), iZO,...,N—I—l, (1)

be given, where: a = x¢g < 77 < --- < xny41 = b. Let us put
hl‘:l’H_l—l'i, ZZO,,N

Definition 1. An interpolating hyperbolic spline S with a set of tension
parameters {p; > 0 |¢=0,..., N} is a solution of the DMBVP

d*s i\ d?S , .
i (%) sz, in each (@;,2i41), 1=0,....,N, (2)
S € C%[a, ], (3)

with the interpolation conditions
S(l‘i):fi, 1=0,...,.N+1, (4)

and the end conditions

S"(a) = f§ and S"(b) = fiyn. (5)
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The classical end constraints (5) we consider only for the sake of
simplicity. One can also use other types of the end conditions [11].

Let us now consider a discretized version of the previous DMBVP.
Let n; e N, : =0,..., N, be given; we look for

{wijy j=-1,...,ni+1, i=0,...,N},

satisfying the difference equations:

N2
where S+ A
Ui j—1 — 2Uij + Us iyt i
Njugj = J 7-2] J 7 = —Z

The smoothness condition (3) is changed into

Uj—1,mn;_1 = Uj0 ,

Ui—1,n;_q41 — Ui—1,n;_1—1 Uyl — Ui —1

271 N 27;  r= e, (7)
Nicquwioin,_, = Nugo
while conditions (4)—(5) take the form
ui,OZfivi:()v"'va uN,nN:fN—|—17 (8)
Aouoo = fo's  ANUNny = fNy1 -
Our discrete mesh solution will be then defined as
{uij, 7=0,...,n;, 1=0,1,....N}. (9)

In the next section we prove the existence of the solution of the previous
linear system while we postpone to Section 4 the comments on the practical
computation of the mesh solution.

§3. System Splitting and Mesh Solution Extension

In order to analyze the solution of system (6)—(8) we introduce the notation
mi; = Ny, J=0,...,n;, 1=0,...,N. (10)
Then, on the interval [z;, x;41], (6) takes the form

Mo = My,

My j—1 — 2mg; + My j11 pi\? '
J 72] ’ _<h_l> mi; =0, 7 =1,...,n; — 1, (11)

7

My p, = My41,
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where m; and m;4; are prescribed numbers. The system (11) has a unique
solution, which can be represented as follows

mi; = Mi(xi;), @iy =ai+57, J=0,...,n
with

Mi(a) = m, 2B ki(1—1) sinh k;t P

N Z N Z '77 t - 77
sinh(k;) it sinh(k;) h;

and where the parameters k; are the solutions of the transcendental equa-
tions

?

2nisinh -— =p;, pi >0,

7

that is

2
Ji = 2n;1n | 25 4 (p’> +1]>0, i=0,...,N.

or 2n;

From (10) and from the interpolation conditions (8) we have

w0 = fi,

Ui -1 — 2U; + g 1 .
3 =my;, J=0,...,n;, (12)

7

Uj p; = fi—i—l-

For each sequence m;j, j = 0,...,n;, system (12) has a unique solution
which can be represented as follows

wij = Ui(a;), j=-1,...,n; +1,
where
Ui(x) = fil —t) + fiqat + @i(1 — H)him; + pi(t)himisa, (13)

with
sinh(k;t) — tsinh(k;)
Pilt) = p? sinh(k;)
In order to solve system (6)—(8), we only need to determine the values m;,
i =0,...,N+1, so that the smoothness conditions (7) and the end condi-
tions in (8) are verified. From (12)—(13), conditions (7) can be rewritten
as

Uimi(2) = U(y),
Uisg(zi +7im1) = Uima(2g —mm1) - Uy +73) = U — 1) (14)
2Ti—1 - 27—1‘ ’

Ai_lUi_l(l'i) = AZUZ(J?Z),
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where

Uiz +7;)=2U;(z) + U, (x — 75
AU o) = DA =0 e 1) g
J

Then, from (10)—(11) and (12), the first and the third equalities in
(14) are immediately satisfied, while, using (13) and the end conditions
in (8), the second equality provides the following linear system with a
3-diagonal matrix for the unknown values m;:

o
mo = Jo

ai—thi—imi—1 + (Bicihiz1 + Bihi)ms + ahimiyr = d;, 1 =1,..., N,

"
mN+1 = fngrs

(15)

where
d, = fivr —fi  fi—fiza
hi hioy
991(,%) — c,oi(—n%) ng sinh(ﬁ—i) — sinh(k;)
= n% T p? sinh(k;) ’
wi(1+ n%) —pi(l — n%) n; cosh(ki)sinh(ﬁ—ii) — sinh(k;)
bi = 2 - p? sinh(k;) '

Expanding the hyperbolic functions in the above expressions as power
series we obtain

Bi>2a; >0, 1=0,...,N, forall n;>1, p; >0.

Therefore, the system (15) is diagonally dominant and has a unique so-
lution. We can now conclude that system (6)—(8) has a unique solution

which can be represented as U;(z;5), 7 = —1,...,n; + 1,4 =0,..., N,
whenever the constants m; are solution of (15).
Let us put
U(z) :=Ui(x), € [zi,zi41], 1=0,1,...,N. (16)

Due to the previous construction we will refer to U as discrete hyperbolic
tension spline interpolating the data (1). We observe that we recover the
result of [14] for discrete cubics since

1 1 1 1
lim a; = —(1- F> lim 8= (24 F> lim i(t) =

pi—0 6
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§4. Computational Aspects

The aim of this section is to investigate the practical aspects related to
the numerical evaluation of the mesh solution defined in (9).

A standard approach, [17], consists of solving the tridiagonal system
(15) and then evaluating (13) at the mesh points as is usually done for the
evaluation of continuous hyperbolic splines. At first sight, this approach
based on the solution of a tridiagonal system seems preferable because of
the limited waste of computational time and the good classical estimates
for the condition number of the matrix in (15). However, it should be ob-
served that, as in the continuous case, we have to perform a large number
of numerical computations of hyperbolic functions of the form sinh(k;t)
and cosh(k;t) both to define system (15) and to tabulate functions (13).
This is a very difficult task, both for cancellation errors (when k; — 0)
and for overflow problems (when k; — o0). A stable computation of the
hyperbolic functions was proposed in [17], where different formulas for the
cases k; < 0.5 and k; > 0.5 were considered and a specialized polynomial
approximation for sinh(-) was used.

However, we note that this approach is the only one possible if we
want a continuous extension of the discrete solution beyond the mesh
point.

In contrast, the discretized structure of our construction provides us
with a much cheaper and simpler approach to compute the mesh solution
(9). This can be achieved both by following the system splitting approach
presented in Section 3, or by a direct computation of the solution of the
linear system (6)—(8).

As for the system splitting approach, presented in Section 3, the fol-
lowing algorithm can be considered.

Step 1. Solve the 3-diagonal system (15) for m;, i =1,..., N.
Step 2. Solve N + 1 3-diagonal systems (11) for my;, j =1,...,n; — 1,

i=0,... N,
Step 3. Solve N + 1 3-diagonal systems (12) for u;;, j=1,...,n; — 1,
i=0,... N

In this algorithm, hyperbolic functions need only be computed in
step 1. Furthermore, the solution of any system (11) or (12) requires
8¢ arithmetic operations, namely, 3¢ additions, 3¢ multiplications, and 2¢
divisions [22], where ¢ is the number of unknowns, and is thus substantially
cheaper than direct computation by formula (13).

Steps 2 and 3 can be replaced by a direct splitting of the system
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(6)—(8) into N + 1 systems with 5-diagonal matrices

uio = fi, Niugo=M;,

N 2
Afui,j—<%> Auij=0, j=1,....,ni—1, i=0,....N. (18)

Uin; = fiv1, Ny, = Migq,

Also, in this case the calculations for steps 2 and 3 or for system (18)
can be tailored for a multiprocessor computer system.

Let us discuss now the direct solution of system (6)—(8) which, of
course, only involves rational computations on the given data. In order to
do this in the next subsections we investigate in some details the structure
of the mentioned system.

4.1 The Pentadiagonal System

Eliminating the unknowns {u; —y, ¢ = 1,..., N, } and {u; p;41, ¢ =
0,...,N —1}, from (7) determining the values of the mesh solution at the
data sites x; by the interpolation conditions and eliminating g, —1, UN ny+1
from the end conditions (8) we can collect (6)—(8) into the system

Au=b, (19)
where
— T
u = (u01,. ey U0 mg—15 ULy e o5 U215 00 o s UNTy - - 7uN,nN—1) 5

A is the following pentadiagonal matrix:

by —1 ag 1
ag bo ag 1
1 ag bo ag 1
1 ag bo ag
1 a No,ng—1 50,n0—1
51,1 ma ax 1
aq bl aq 1
1 any by an 1

1 an by an
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with

2
ai:_(4‘|’wi)7 bi:6‘|’2wi7wi: <&> ; iZO,l,...,N,

n;
1—p; pi — 1
i—1mii—1 =0+ 2w; 1+ ——, ;1 =6+ 2w,
Mi—1,ni_1—1 -I-w1—|-1_|_pi 75,1 -I-uJ-I-IOi_I_1
2 2
Oitmii1—1 = ————, 6j1 = P )
pilpi +1) pi+1
pi = Tl, 1 =1,2,...,N;
Ti—1

and

b = (—(CLO +2)f0 _7_02]('6/7_]('0707‘” 707_f17_70,n0—1f17_71,1f17_f1707

s 707 _fN+17 —(CLN + 2)fN—|—1 - sz\ff]l\l7+1)T

Y

with

l—pi)
pi 7 i=1,2,...,N.
Vi = —(4+wi +2(pi — 1)),

Yicimi -1 = —(4d+wi—g +2

4.2 The Uniform Case

From the practical point of view it is interesting to examine the structure
of A when we are dealing with a uniform mesh, that is 7, = 7. In such
a case it is immediately seen that A is symmetric. In addition, following
[14] we observe that A = C 4 D, where both C and D are symmetric
block diagonal matrices. To be more specific,

Co

C, )
C; = B; —w;B;,
Cn

where B; is the (n; — 1) x (n; — 1) tridiagonal matrix
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and

o O
o O

0 0
L 0 0

The eigenvalues of C, A\;(C), are the collection of the eigenvalues of C,.
Since, (see [14]),
Aj(B;) = —2<1 —cos]i>, j=1,...,n; —1,

L&D

we have

. .
A(Cy) = 4<1 —cos‘ﬂ> —|—2wi<1 —cos‘ﬂ> j=1,...,n; —1.
n; 1y
In addition, the eigenvalues of D are 0 and 2, thus we deduce from a corol-
lary of the Courant-Fisher theorem [6] that the eigenvalues of A satisfy

the following inequalities

A(A) > A (C) = n;l%jn/\j(Ci) = miin {4(1 — cos n1>2 + 2wi<1 — cos nlﬂ )
Hence, A is a positive matrix and we directly obtain that the pentadiag-
onal linear system has a unique solution.

In addition, by Gershgorin’s theorem, A\;(A) < max;[16 + 4w;|. Then
we obtain the following upper bound for the condition number of A which
is independent of the number of data points, N 4+ 2, and which recovers
the result presented in [14] for the limit case p; =0, 7 =0,..., N,

)?]
el )

:|ﬁ

3
3

A A - max; [16 +4(
[A][ool[AT oo < —— T2
min; [4(1 — cos n_i) + 2(
max; [16 + 4(%)2]
min,( ;=) [7* + (7pi)?]

;g

s

[
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Summarizing, in the particular but important uniform case we can
compute the mesh solution by solving a symmetric, pentadiagonal, positive
definite system and therefore, we can use specialized algorithms, with a
computational cost of 17¢ arithmetic operations, namely, 7¢ additions, 7¢
multiplications, and 3¢ divisions [22], where ¢ is the number of unknowns.

Moreover, since the upper bound (20) for the condition number of
the matrix A does not depend on the number of interpolation points,
such methods can be used with some confidence.

In the general case of a non—uniform mesh, the matrix A is no longer
symmetric, and an analysis of its condition number cannot be carried out
analytically. However, several numerical experiments have shown that the
condition number is not influenced by the non—symmetric structure, but
does depend on the maximum number of grid points in each subinter-
val, exactly as in the symmetric case. In other words, symmetric and
nonsymmetric matrices, with the same dimension and produced by dif-
ference equations with the same largest n;, produce very close condition
numbers. Non-uniform discrete hyperbolic tension splines have in fact
been used for the graphical tests of the section 10.

65. 2-D DMBVP. Problem Formulation
Let us consider a rectangular domain Q = Q UT where
Q={(z,y) |la<ax<b c<y<d}
and I is the boundary of 2. We consider on 2 a mesh of lines A = A, x A,

with
Axia:$0<$1<"'<$]\7+1:b,

Ayie=yo <y < <ym+1 = d,

which divides the domain € into the rectangles ﬁij = Q;; UT;; where

Qi ={(z,y) | v € (xs,2i11), ¥ € (y5,y541)}

and I';; is the boundary of €;;,2=0,...,N, 7 =0,..., M.
Let us associate to the mesh A the data

(l’i,yj,fij), 1=0,....,.N+1, 37=0,.... M+1,

20, i =0,N+1, j=0,...,M+1,
157, =0, N+1, j=0M+1,
2, i=0,N+1, j=0,M+1,

where
(o) _ 0" f(wiy;)

Y =0,2.
v dxrdys "o ’
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We denote by C%2[Q)] the set of all continuous functions f on Q having
continuous partial and mixed derivatives up to the order 2 in = and y
variables. We call the problem of searching for a function S € C%2[Q] such
that S(z;,y;) = fi;,1=0,...,N+1,7=0,...,M+1, and S preserves the
shape of the initial data the shape preserving interpolation problem. This
means that wherever the data increases (decreases) monotonically, S has
the same behaviour, and S is convex (concave) over intervals where the
data is convex (concave).

Evidently, the solution of the shape preserving interpolation problem
is not unique. We are looking for a solution of this problem as a biharmonic
tension spline.

Definition 2. An interpolating biharmonic spline S with two sets of ten-
sion parameters {0 < p;; < oo |t =0,....,N, j =0,...,M +1} and
{0<¢g; <0 |t=0,....N+1, 7 =0,...,M} is a solution of the
DMBYVP

s s oS (z—oij>2a2s (qijya?s

Ozt + 28:1;28y2 + Oyt da? [; y? =0 (21)

h;

in each €5, hi =21 — 2, lj =yj41 — Y5,
Pij = max(pij, pij+1), @iy = max(gij, dit1,5),
1=0,...,N, 7=0,..., M,

o*s i\ S '

'S [(q;\°0°S .
Y _] —:07 ye(ijyj-l-l)v ]:07"'7M7 (23)
dy I
r=z;, t¢=0,...,N+1,
S e Cc*?[Q], (24)
with the interpolation conditions
S(l‘i,yj):fi]‘, iZO,...,N—I—l, j:O,...,M—I—l, (25)
and the boundary conditions
SOy =f2Y, P=ONEL 0 M,
5(0’2)($i7yj) :fi(]q’z)v U :07"'7N+17 ] :07M+17 (26)
SCDaiy) =f; ", i=0,N 41, j=0,M+1.

¥
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By this definition an interpolating biharmonic tension spline S is a
set of the interpolating biharmonic tension functions which satisfy (21),
match up smoothly and form a twice continuously differentiable function
both in x and y variables

S(T’O)(l'i - an) :S(T’O)(xi + Ovy)v r= 07 1727 1= 17 ce 7N7

(27)
SO 2,y —0) =50 (2,y; +0), s=0,1,2, j=1,...,M.
C? smoothness of the interpolating hyperbolic tension splines in (22) and
(23) was proven in [3,11]. The computation of the interpolating bihar-
monic tension spline reduces to a computation of infinitely many proper
one-dimensional hyperbolic tension splines.

For all p;j,¢;; — 0 the solution of (21)—(26) becomes a biharmonic
spline [4] while in the limiting case as p;j,¢;; — oo in rectangle Q;; the
spline S turns into a linear function separately by x and y, and obviously
preserves the shape properties of the data on Q;;. By increasing one or
more of tension parameters the surface is pulled towards an inherent shape
while at the same time keeping its smoothness. Thus, the DMBVP gives
an approach to the solution of the shape preserving interpolation problem.

66. Finite-Difference Approximation of DMBVP

For practical purposes, it is often necessary to know the values of the so-
lution S of a DMBVP only over a prescribed grid instead of its global
analytic expression. In this section, we consider a finite-difference ap-
proximation of the DMBVP. This provides a linear system whose solution
is called a mesh solution. It turns out that the mesh solution is not a
tabulation of S but is supposed to be some approximation of it.

Let n;,m; € N, ¢ = 0,...,N, y = 0,...,M, be given such that
hi/n; = 1;/m; = h. We are looking for a mesh function

{uik;ﬂ|k:—1,...,ni—|—1,i:0,...,N;Z:—1,...,mj—|—1,j:0,...,M},

satisfying the difference equations

_ 2 — 2
[Af + 20102 + A — (%) Ay — (%—") Az] wikjt =0, (28)
12 J

E=1,....,n;—=1,¢=0,....,.N; I=1,...,m; =1, y=0,..., M,

2
[Af - (%) Al]uik;j, =0, (29)
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2
[Ag - (ql—]> Az]uz‘k;ﬂ =0, (30)
J
k:{(), if:=0,...,N -1,

O.ny ifi=N, ;o I=1,...,m;—1,53=0,...,M,

where
A Ui k1551 — 2Ugksg0 + Ug k—1;51
1k 50 = )
) h2
Uik;j I41 — 2Uiks 1 T Uik;j,1—1
Nowip, 1 = 2 -

The smoothness conditions (27) are changed to

Ui—1,n;_1550 =Wi0551,

Ui—1,n; 141550 — Wi—l,n; =155 U0 — Uq —1;51 (31)
2h 2h ’

ANiwi—1 ng 51 =Nwio i,
1=1,...,N, l=0,....,m;, g=0,..., M,

Wik;j—1,mj_1 —Uik;j0,
Wik;j—1,mj_1+1 — Uik;j—1,m;_1—1 :uik;jl — Ujk;3,—1 (32)
2h 2h ’
Aotk j—1,m;_, =Nauir;jo,

k=0,...,n; i=0,....N, j=1,... M.

Conditions (25) and (26) take the form

%40;50 :fip UN,nn;j0 :fN-i-l,Jv
(33)
Wi0; M may =i, M41,  UNnn:M,ma =FN+1,M+1s
1=0,...,N, y=0,..., M,
and
AluOo;]‘O :féi’o), j = 0, e 7_2\4, AIUOO;M,mM - (5’2]’\2:_17
A1UN nysjo = ](\?fl)’jv J=0,..., M; AVUN iy M may = J(szl),MHv
Asuioo =f0P,  i=0,...,N; A2un 00 =FN 1o
AZUiO;M,mM :fi(g\’;lp t=0,...,N; AZUN,nN;M,mM = ](\(f)fl),M+17
A11\2u00;00 = éﬁ’z), AlAZuN,nN;OO = J(szl),ov
A1 Aot my = ézz\ﬁp M AsuN s Mymar = J(vzfl)MH

(34)
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§7. Algorithm

To solve finite-difference system (28)—(34) we propose first to find its so-
lution on the refinement of the main mesh A. The latter can be achieved
in the four steps.

First step. Evaluate all tension parameters p;; on the lines
y=1v;,7=0,...,M+1and ¢; on the lines x =2;,7=0,...,N +1 by
one of 1-D algorithms for automatic selection of shape control parameters,
see, e.g., [11,16,17], etc.

Second step. Construct discrete hyperbolic tension splines [3] in
the x direction by solving the M + 2 linear systems (29). As a result, one
finds the values of the mesh solution on the lines y = y;, 7 =0,...,M +1
of the mesh A in x direction.

Third step. Construct discrete hyperbolic tension splines in
the y direction by solving the N + 2 linear systems (30). This gives us the
values of the mesh solution on the lines * = z;, : = 0,..., N + 1 of the
mesh A in y direction.

Fourth step. Construct discrete hyperbolic tension splines

in the # and y directions interpolating the data fl(2’0)7 = 0,N 4+ 1,

j=0, ., M+1 and 0% i =0,...,N+1,j =0M+1, on the

boundary I'. This gives us the values
Moo, Munnyg, [1=0,...,m;, 7=0,...,M,

(35)

Azul‘k;oo, Azul‘k;M’mM, k = 0, RN ITE Z = 0, ceey

Now the system of difference equations (28)—(34) can be substantially
simplified by eliminating the unknowns

Uik:jls k=-1,n;+1,¢=0,..., N, Z:(),...,mj, 7 =0,..., M,
Uik; 51, k=0,...,n;, 0 =0,...,N, Z:—l,m]‘—l—l, 7=0,..., M,

using relations (31), (32), and the boundary values (35).

As a result one obtains a system with (n; — 1)(m; — 1) difference
equations and the same number of unknowns in each rectangle €2;;, ¢ =
0,....,N, 7 =0,...,M. This linear system can be efficiently solved by the
SOR algorithm or applying finite-difference schemes in fractional steps on
single- or multi-processor computers.

68. SOR Iterative Method

Using a piecewise linear interpolation of the mesh solution from the main
mesh A onto the refinement let us define a mesh function

{ulglg |k =0,...oni, i=0,...,N, 1=0,...,mj, j=0,...,M}. (36)
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In each rectangle Q;;, + = 0,...,N, 7 = 0,..., M, the difference
equation (28) can be rewritten in componentwise form

1
Uikl = Bij [Ui,k—l;jl + Ui,k—l—l;jl] + ¥ij [Uik;j,l—l + Uik;j,l—i—l]
]
= 2w k—1;4,0-1 F Ui k=101 F Wik 0-1 F Ui ktgii]  (37)
— Uik;j,1—2 — Wikyj,l42 — Wi k—2;50 — Ui,k—|—2;jl}7
where

— 2 — 2 — 2 — 2
Pi; q;; Pi; q;;
Oéij:20—|—2<—n“7> —|—2<—m‘7‘> ; ﬁij:8+<—nj7> ; ’Yij:8+<m]‘> :
1) 7 12 J

Now using (37) we can write down SOR iterations to obtain a numer-
ical solution on the refinement

- 1 (v+1) (v) (v+1) ()
Uik; 5l ey {ﬂij [ui,k—l;jl + ui,k—i—l;jl] + Yij [uik;j,l—l + uik;j,l—l—l]
ij

(v+1) (v) (v+1) (v)
- 2[“i,k—1;]‘,l—1 T U a T W k-1 T ui,k+1;j,l+1]
(v+1) (v) (v+1) (v)
T Uikii—2 T Wiksgaae T U k—2,50 — Uy k42550 (0

v+1 v — v
ugk;jl) :ugk;)jl + w(Wikj1 — ugk;)jl)v I<w<2, v=01,...,

k=1,....nij—1,i=0,...,N, I=1,...,m; —1, j=0,..., M.

Note that outside the domain €2 the extra unknowns U0, —1351, UN,ny+1:505
I =0,....,m;, 3 =0,...,M, and ¥;k;0,—1, Yik;M,map+1, & = 0,...,1n4,
i =0,...,N, are eliminated using (35) and are not part of the iterations.

69. Method of Fractional Steps

The system of difference equations obtained in section 4 can be efficiently
solved by the method of fractional steps [21]. Using the initial approxima-
tion (36) let us consider in each rectangle Q,;,¢=0,...,N,j=0,..., M,
the following splitting scheme

un—|—1/2 —un

+ Anunﬂ/2 + Appu" =0,
7 (38)

un—l—l . un—|—1/2
+ Agou™ T A2 = 0,

T
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where
Pij\?
Ay :Af —pA1, Ay = A% —qha, Aig =AMy, p= <h_]> y 4= <

@)2
Zj ’

N;

u:{uik;ﬂ|k:1,...,ni—1, 1=0,...

b

I=1,....,m;—1, j=0,...,M}.
Eliminating from here the fractional step u"*1/?2
scheme in whole steps, equivalent to the scheme (38),

yields the following

n+1 un
—|—(A11—I—Agg)u"'H—|—2A12u"—|—T(A11A22u"+1—Afzu") = 0 (39)

T

It follows from here that the scheme (39) and the equivalent scheme
(38) possess the property of complete approximation [21] only in the case if

ANy = A%z or pij=¢i; =0 forall ¢j7.

Let us prove the unconditional stability of the scheme (38) or, which
is equivalent, the scheme (39). Using usual harmonic analysis [21] assume
that

n 1Tz un—|—1/2

r — X; — Y
U :nne 5 Z—|—k2y y].

I l;
Substituting equations (40) into equations (38) we obtain the amplification
factors

(40)

= 77n—|—1/26“r27 2=k

P _ Nnt1/2 1 —ajay py = Mnt+1 1—aay
1= = ) 2 = - ’
Mn 1—pyTas +a? Nnt1/2 1—q\/Tay +a
(1—@1@2)2
p=ripr= G 7y
(1 —pyTa1 +a3)(1 —q\/Tas + a3)
where
4 kih
a = — }\L/jsin2<l7hli>, kr=1,...,n;—1, n;h = h;y,
4\/; . kzhﬂ'
== st (BT ) =t -1 myhi=

It follows from here that
_ 2 _ 2
ngg (1 2@1@2) - S (1 CL1(L2> <1
(1+a7)(1+a3) 14+ ajas

for any 7. This proves the unconditional stability of the scheme (38).
At each fractional step in (38) one has to solve a linear system with

a symmetric positive definite pentadiagonal matrix. This is much cheaper
than directly solving the linear system (28). However, in general the
scheme (38) has the property of incomplete approximation [21]. For this
reason, in iterations we have to use small values of the iteration parameter

T, e.g., \/T/h* = const.
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§10. Graphical Examples

The aim of this final section is to illustrate the tension features of discrete
hyperbolic and biharmonic tension splines with some (famous) examples.
Before, we want to notice that the continuous form U; of our solution
given in (13) has the good shape-preserving properties of cubics (see e.g.
[17]) in the sense that U, is convex (concave) in [x;,x,41] if and only if
miy; > 0(<0), 7 =0,1, and has at most one inflection point in [z;, z;41].
In order to preserve the shape of the data, we therefore simply have to
analyze the values A;u; o and Aju; », and increase the tension parameters if
necessary. All the strategies proposed for the automatic choice of tension
parameters in continuous hyperbolic tension spline interpolation can be
used in our discrete context, see e.g. [16, 17].

In our first example we have interpolated the radio chemical data
reported in Table 1. The effects of changing the tension values p; are
depicted in Figs. 1-2. We have adopted a non—uniform mesh, assigning the
same number of points (30) to each interval of the main mesh, and imposed
naturel end conditions, that is, following formulas (15), mg = my41 = 0.

Table 1. Radio chemical data:

x; | 7.99 8.09 8.19 8.7 9.2
fi 0 2.76429E-5 | 4.37498E-2 | 0.169183 | 0.469428

x; 10 12 15 20
fi 10.943740 | 0.998636 | 0.999916 | 0.999994

Fig. 1 is obtained setting p; = 0, that is considering the discrete cubic
spline interpolating the data. In Fig 2 a new discrete interpolant with
po =p1 =300, p, =15, ¢ = 2,...,7, is displayed for the same data, and
the stretching effect of the increase in tension parameters is evident.

In the second example we have taken Akima’s data of Table 2 and
constructed discrete interpolants with 20 points for each interval, with nat-
ural end conditions mg = my4+1 = 0. Fig. 3 left shows the plot produced
by a uniform choice of tension factors, namely p; = 0. The right part of
the same figure shows a second mesh solution, which perfectly reproduces
the data shape, where we have set p5 = psg = pg = 10 while the remaining
p; are unchanged.

Table 2. Akima’s data [1]:

x; 0| 2| 3| 5] 6] 8 9 11 |12 |14 | 15
fi |10 |10 |10 |10 |10 |10 |10.5 |15 | 50 |60 |85

In 2-D case the approach developed in this paper was tested on a
number of numerical examples. Because of space limitations we consider
here only some of them. The initial data (z;,y;, fi;) in Fig. 4 was obtained
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Fig. 1. The radio chemical data with natural end conditions my = my41 = 0.
Interpolation by discrete cubic spline (p; = 0).
Right: a magnification of the lower left corner.
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Fig. 3. Akima’s data with natural end conditions.
Left: Discrete interpolating cubic spline (p; = 0).
Right: discrete hyperbolic spline with ps = ps = ps = 10.
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by taking Akima’s data in Table 2 both in x and y directions and using
the formula fij = fi+ f;. As shown in Fig. 5 the usual discrete biharmonic
spline does not preserve the monotonicity and convexity properties of the
initial data. On the other hand the discrete biharmonic tension spline in
Fig. 6 preserves the data shape and gives a visually smooth surface.

The exponential function

fla,y) :%e—%[(9x—2)2+(9y—2)2] n §e_[41_9(9x+1)2+11—0(9y+1)]
7 4
1 (41)

_ L o2 00-12 L~ 4 0y-9)7)

2

has been used in [5,7] to obtain a scattered data. A graph of the function
(41) with the data points marked by circles is shown in Fig. 7. A projection
of the data points on zy plane and a surface obtained by joining the data
points by pieces of straight lines are given in Fig. 8. Fig. 9 presents the
resulting biharmonic surface under tension.

The initial topographical data in the next test is shown in Fig. 10.
Fig. 11 is obtained by setting all tension parameters to zero, that is, con-
sidering usual discrete biharmonic spline interpolating the data. It gives
oscillations which are unnatural for the data. The situation can be sub-
stantially improved by using biharmonic tension spline with automatic
selection of the shape control parameters. The resulting discrete tension
spline in Fig. 12 has no oscillations and simultaneously keeps a visually
smooth surface.

A reconstruction of the jet’s surface is shown in Figs. 13-15. The
initial data was defined as a set of 16 pointwise-assigned non-intersecting
and in general curvilinear sections of a 3-D body. The number of points
varied from section to section with a total of 212 points. Fig. 13 gives the
initial data. Figs. 14 and 15 show the biharmonic surfaces without tension
and with “optimal” tension parameters, respectively.

As a last numerical test, we tried to reconstruct the surface of a
“Viking ship”. The initial data, which the author obtained from Professor
T. Lyche of the Oslo University, was defined pointwise in the form of the
envelopes of the sides and the keel of the boat, as well as six ribs. 3-D view
of the data is given in Fig. 16. In Figs. 17 and 18 the resulting biharmonic
tension surface is given for very large and “optimal” tension parameters
with a mesh of lines 100 x 100.

Applying the SOR iterative method or using the method of fractional
steps we obtain practically the same results. However the method of frac-
tional steps converges about three times faster than the SOR iterations.
But the operation count at each step of the SOR iterative method is ap-
proximately three times less than that in the method of fractional steps.
Therefore, the performance of both methods is very similar. They can be
also easily modified for use on parallel processor computers.
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Fig. 7. A graph of the function (41) with the data points marked by circles.

]

Fig. 8. The initial data. Left: a projection of the data points on the zy plane.
Right: a surface obtained by joining the data points.
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Fig. 9. The resulting biharmonic surface under tension.



., L, ANVaAsSov

Iy
N

2000

1500

v, )
2 / p '
SERAZ \\/‘ J
e AWNOIS() \a
e Y | S L ISP
ZAZATp A NS
227 ¢ R 22
22 X ""'1‘# P A AL
7 i 7 S 25
2
7

7
= ool
TV

1000 30

2 : 37
AN\ ‘, \oore,
% ZAZANSZT TR ‘ WX R
AT ANN W7 X ¥ L7
500 - -%j‘\;/\\‘#.l/‘%,ﬂm* ’..‘.
I .""
... 7>
.

7Rz 77 o
W TZZATLZT N e
7T ..”.’ 15
L
L

Fig. 10. A view of the initial topographical data.

R

MR
Wi
L
i
;.-.,,ll,,lﬂﬂ‘

R
N
\\\\\\\\\ \
[
N

R
N

I
i
AT

X

N

X

Fig. 12. The resulting surface under tension.



LD VL Jor LEeNsSior JPitnes

120

100

80

60

400

-150

Fig. 13. The initial jet’s data.

140
120
100
80
60
40
. M A
: \\\\\\\\\\‘\\\‘\‘\3\”»\‘ =i.
\ SN h
R
20| . §M |
0 M
NN
AN

100

150

400

-150

Fig. 14. The biharmonic surface without tension.

120
100
80
60
40
. A
20 \ N
N Nl
0 \ S\
AN
ANV A
-20 DA /AN
- )

150

400

-150

Fig. 15. The resulting surface under tension.



D. 1. ANVASOV

Fig. 16. 3-D view of the data.
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Fig. 18. The resulting biharmonic surface with “optimal” tension parameters.
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