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Abstract� This paper addresses a new approach in solving the pro�
blem of shape preserving spline interpolation� Based on the formula�
tion of the latter problem as a di	erential multipoint boundary value
problem for hyperbolic and biharmonic tension splines we consider its

nite�di	erence approximation� The resulting system of linear equa�
tions can be e�ciently solved either by direct �Gaussian elimination
and iterative methods �successive over�relaxation �SOR method and

nite�di	erence schemes in fractional steps� We consider the basic
computational aspects and illustrate the main advantages of this orig�
inal approach�

Keywords� Hyperbolic and biharmonic tension splines� di	eren�
tial multipoint boundary value problem� successive over�relaxation
method� 
nite�di	erence schemes in fractional steps� shape preserv�
ing interpolation�

x�� Introduction
Spline theory is mainly grounded on two approaches� the algebraic one
�where splines are understood as smooth piecewise functions� see� e�g��
���	
 and the variational one �where splines are obtained via minimization
of quadratic functionals with equality and�or inequality constraints� see�
e�g�� ���	
� Although less common� a third approach �	� where splines are
de�ned as the solutions of di�erential multipoint boundary value problems

�DMBVP for short
� has been considered in ��������	 and closely relates to
the idea of polysplines ���	� Even though some of the important classes
of splines can be obtained from all three schemes� speci�c features some�
times make the last one an important tool in practical settings� We want
to illustrate this fact by the examples of interpolating hyperbolic and bi�

harmonic tension splines� Introduced by Schweikert in ���� ���	 hyperbolic
tension splines are still very popular �������������	� Earlier biharmonic
�thin plate
 tension splines were considered in �����������	� etc�
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For the numerical treatment of a DMBVP we replace the di�erential
operator by its �nite�di�erence approximation� This gives us a linear sys�
tem of di�erence equations with a matrix of special structure� The latter
system can be e�ciently treated by the Gaussian elimination or by iter�
ative methods such as SOR iterative method or �nite�di�erence schemes in

fractional steps ���	� We present numerical examples illustrating the main
features of this approach�

The content of this paper is as follows� In Section � we formulate the
��D problem� In Section � we prove the existence of a mesh solution by
constructing its extension as a discrete hyperbolic tension spline� Section
�� with its subsections� is devoted to the discussion of practical aspects
and computational advantages of our discrete spline� In Sections � and �
we formulate the ��D problem and give its �nite�di�erence approximation�
The algorithm for the numerical solution of ��D problem is described in
section �� Section  gives the SOR iterative method� In section � we
consider a �nite�di�erence scheme in fractional steps and treat its ap�
proximation and stability properties� Finally� Section �� provides some
graphical examples to illustrate the main properties of discrete hyperbolic
and biharmonic tension splines�

x�� ��D DMBVP� Finite Di�erence Approximation

Let the data

�xi� fi
� i � �� � � � �N � �� ��


be given� where� a � x� � x� � � � � � xN�� � b� Let us put

hi � xi�� � xi� i � �� � � � �N�

De�nition �� An interpolating hyperbolic spline S with a set of tension

parameters fpi � � j i � �� � � � �Ng is a solution of the DMBVP

d�S

dx�
�
�
pi
hi

��
d�S

dx�
� �� in each �xi� xi��
� i � �� � � � �N� ��


S � C��a� b	� ��


with the interpolation conditions

S�xi
 � fi� i � �� � � � �N � �� ��


and the end conditions

S���a
 � f ��� and S���b
 � f ��N��� ��
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The classical end constraints ��
 we consider only for the sake of
simplicity� One can also use other types of the end conditions ���	�

Let us now consider a discretized version of the previous DMBVP�
Let ni � IN� i � �� � � � �N� be given� we look for

fuij� j � ��� � � � � ni � �� i � �� � � � �Ng�
satisfying the di�erence equations�h

��
i �

� pi
hi

��
�i

i
uij � �� j � �� � � � � ni � � � i � �� � � � �N� ��


where

�iuij �
ui�j�� � �uij � ui�j��

� �i
� �i �

hi
ni
�

The smoothness condition ��
 is changed into

ui���ni�� � ui� �

ui���ni���� � ui���ni����

��i��
�

ui�� � ui���

��i
�

�i��ui���ni�� � �iui��

i � �� � � � �N� ��


while conditions ��
���
 take the form

ui�� � fi � i � �� � � � �N� uN�nN � fN�� �

��u��� � f ��� � �NuN�nN � f ��N�� �
�


Our discrete mesh solution will be then de�ned as

fuij � j � �� � � � � ni� i � �� �� � � � �Ng � ��


In the next section we prove the existence of the solution of the previous
linear system while we postpone to Section � the comments on the practical
computation of the mesh solution�

x	� System Splitting and Mesh Solution Extension

In order to analyze the solution of system ��
��
 we introduce the notation

mij � �iuij � j � �� � � � � ni� i � �� � � � �N� ���


Then� on the interval �xi� xi��	� ��
 takes the form

mi� � mi�

mi�j�� � �mij �mi�j��

��i
�
�pi
hi

��
mij � �� j � �� � � � � ni � ��

mi�ni �mi���

���
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wheremi andmi�� are prescribed numbers� The system ���
 has a unique
solution� which can be represented as follows

mij � Mi�xij 
� xij � xi � j�i� j � �� � � � � ni�

with

Mi�x
 � mi
sinhki��� t


sinh�ki

�mi��

sinhkit

sinh�ki

� t �

x � xi
hi

�

and where the parameters ki are the solutions of the transcendental equa�
tions

�ni sinh
ki
�ni

� pi� pi � ��

that is

ki � �ni ln

�
� pi
�ni

�

s�
pi
�ni

��

� �

�
A � �� i � �� � � � �N�

From ���
 and from the interpolation conditions �
 we have

ui� � fi�

ui�j�� � �uij � ui�j��

��i
�mij � j � �� � � � � ni�

ui�ni � fi���

���


For each sequence mij � j � �� � � � � ni� system ���
 has a unique solution
which can be represented as follows

uij � Ui�xij 
� j � ��� � � � � ni � ��

where

Ui�x
 � fi��� t
 � fi��t� �i��� t
h�imi � �i�t
h
�
imi��� ���


with

�i�t
 �
sinh�kit
� t sinh�ki


p�i sinh�ki

�

In order to solve system ��
��
� we only need to determine the values mi�
i � �� � � � �N ��� so that the smoothness conditions ��
 and the end condi�
tions in �
 are veri�ed� From ���
����
� conditions ��
 can be rewritten
as

Ui���xi
 � Ui�xi
�

Ui���xi � �i��
�Ui���xi � �i��


��i��
�
Ui�xi � �i
�Ui�xi � �i


��i
�

�i��Ui���xi
 � �iUi�xi
�

���
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where

�jUj�x
 �
Uj�x � �j
� �Uj�x
 � Uj �x � �j


� �j
� x � �xj � xj��	�

Then� from ���
����
 and ���
� the �rst and the third equalities in
���
 are immediately satis�ed� while� using ���
 and the end conditions
in �
� the second equality provides the following linear system with a
��diagonal matrix for the unknown values mi�

m� � f ��� �

�i��hi��mi�� � ��i��hi�� � �ihi
mi � �ihimi�� � di� i � �� � � � �N�

mN�� � f ��N���
���


where

di �
fi�� � fi

hi
� fi � fi��

hi��
�

�i � ��i�
�
ni

� �i�� �

ni



�
ni

� �ni sinh�
ki
ni

� sinh�ki


p�i sinh�ki

�

�i �
�i�� �

�
ni

 � �i��� �

ni



�
ni

�
ni cosh�ki
 sinh�

ki
ni

 � sinh�ki


p�i sinh�ki

�

Expanding the hyperbolic functions in the above expressions as power
series we obtain

�i � ��i 	 �� i � �� � � � �N� for all ni 	 �� pi � ��

Therefore� the system ���
 is diagonally dominant and has a unique so�
lution� We can now conclude that system ��
��
 has a unique solution
which can be represented as Ui�xij
� j � ��� � � � � ni � �� i � �� � � � �N�
whenever the constants mi are solution of ���
�

Let us put

U�x
 �� Ui�x
� x � �xi� xi��	� i � �� �� � � � �N� ���


Due to the previous construction we will refer to U as discrete hyperbolic

tension spline interpolating the data ��
� We observe that we recover the
result of ���	 for discrete cubics since

lim
pi��

�i �
�

�

�
�� �

n�
i

�
� lim

pi��
�i �

�

�

�
� �

�

n�
i

�
� lim

pi��
�i�t
 �

t�t� � �


�
�

���
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x
� Computational Aspects

The aim of this section is to investigate the practical aspects related to
the numerical evaluation of the mesh solution de�ned in ��
�

A standard approach� ���	� consists of solving the tridiagonal system
���
 and then evaluating ���
 at the mesh points as is usually done for the
evaluation of continuous hyperbolic splines� At �rst sight� this approach
based on the solution of a tridiagonal system seems preferable because of
the limited waste of computational time and the good classical estimates
for the condition number of the matrix in ���
� However� it should be ob�
served that� as in the continuous case� we have to perform a large number
of numerical computations of hyperbolic functions of the form sinh�kit

and cosh�kit
 both to de�ne system ���
 and to tabulate functions ���
�
This is a very di�cult task� both for cancellation errors �when ki � �

and for over�ow problems �when ki � �
� A stable computation of the
hyperbolic functions was proposed in ���	� where di�erent formulas for the
cases ki � ��� and ki 	 ��� were considered and a specialized polynomial
approximation for sinh��
 was used�

However� we note that this approach is the only one possible if we
want a continuous extension of the discrete solution beyond the mesh
point�

In contrast� the discretized structure of our construction provides us
with a much cheaper and simpler approach to compute the mesh solution
��
� This can be achieved both by following the system splitting approach
presented in Section �� or by a direct computation of the solution of the
linear system ��
��
�

As for the system splitting approach� presented in Section �� the fol�
lowing algorithm can be considered�

Step �� Solve the ��diagonal system ���
 for mi� i � �� � � � �N �

Step �� Solve N � � ��diagonal systems ���
 for mij � j � �� � � � � ni � ��
i � �� � � � �N �

Step 	� Solve N � � ��diagonal systems ���
 for uij � j � �� � � � � ni � ��

i � �� � � � �N�

In this algorithm� hyperbolic functions need only be computed in
step �� Furthermore� the solution of any system ���
 or ���
 requires
q arithmetic operations� namely� �q additions� �q multiplications� and �q
divisions ���	� where q is the number of unknowns� and is thus substantially
cheaper than direct computation by formula ���
�

Steps � and � can be replaced by a direct splitting of the system
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��
��
 into N � � systems with ��diagonal matrices

ui�� � fi� �iui�� �Mi�

��
iui�j �

�pi
hi

��
�iui�j � �� j � �� � � � � ni � �� i � �� � � � �N�

ui�ni � fi��� �iui�ni �Mi���

��


Also� in this case the calculations for steps � and � or for system ��

can be tailored for a multiprocessor computer system�

Let us discuss now the direct solution of system ��
��
 which� of
course� only involves rational computations on the given data� In order to
do this in the next subsections we investigate in some details the structure
of the mentioned system�


�� The Pentadiagonal System

Eliminating the unknowns fui���� i � �� � � � �N� g and fui�ni��� i �
�� � � � �N � �g� from ��
 determining the values of the mesh solution at the
data sites xi by the interpolation conditions and eliminating u����� uN�nN��

from the end conditions �
 we can collect ��
��
 into the system

Au � b� ���


where

u � �u��� � � � � u��n���� u��� � � � � u��� � � � � uN�� � � � � uN�nN��

T �

A is the following pentadiagonal matrix�

�
																	


b� � � a� �
a� b� a� �
� a� b� a� �

� � �
� a� b� a�

� a� 
��n��� ���n���

���� 
��� a� �
a� b� a� �

� � �
� aN bN aN �

� aN bN aN
� aN bN � �

�
�����������������
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with

ai � ��� � �i
 � bi � � � ��i � �i �

�
pi
ni

��

� i � �� �� � � � �N�


i���ni���� � � � ��i�� �
�� i
� � i

� 
i�� � � � ��i �
i � �

i � �

�i���ni���� �
�

i�i � �

� �i�� � �

�i
i � �

�

i �
�i
�i��

� i � �� �� � � � �N �

and

b � ���a� � �
f� � ��� f
��

� ��f�� �� � � � � ���f������n���f�������f���f�� ��
� � � � ���fN�����aN � �
fN�� � � �Nf

��

N��

T �

with

�i���ni���� � ��� � �i�� � �
�� i
i


�

�i�� � ��� � �i � ��i � �

�

i � �� �� � � � �N�


�� The Uniform Case

From the practical point of view it is interesting to examine the structure
of A when we are dealing with a uniform mesh� that is �i � � � In such
a case it is immediately seen that A is symmetric� In addition� following
���	 we observe that A � C � D� where both C and D are symmetric
block diagonal matrices� To be more speci�c�

C �

�
		

C�

C�

� � �

CN

�
�� � Ci � B�

i � �iBi�

where Bi is the �ni � �
	 �ni � �
 tridiagonal matrix

Bi �

�
					


�� �
� �� �

� �� �
� � �
� �� �

� ��

�
����� �
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and

D �

�
																							


� �
� �

�� �

�
� �
� �

�
� � �

�
� �
� �

�
�� �

� �
� �

�
�����������������������

�

The eigenvalues of C� �k�C
� are the collection of the eigenvalues of Ci�
Since� �see ���	
�

�j�Bi
 � ��
�
�� cos

j�

ni

�
� j � �� � � � � ni � ��

we have

�j�Ci
 � �
�
�� cos

j�

ni

��
� ��i

�
�� cos

j�

ni

�
j � �� � � � � ni � ��

In addition� the eigenvalues of D are � and �� thus we deduce from a corol�
lary of the Courant�Fisher theorem ��	 that the eigenvalues of A satisfy
the following inequalities

�k�A
 � �k�C
 � min
i�j

�j �Ci
 � min
i

h
�
�
�� cos

�

ni

��
� ��i

�
�� cos

�

ni

�i
�

Hence� A is a positive matrix and we directly obtain that the pentadiag�
onal linear system has a unique solution�

In addition� by Gershgorin�s theorem� �k�A
 � maxi������i	� Then
we obtain the following upper bound for the condition number of A which
is independent of the number of data points� N � �� and which recovers
the result presented in ���	 for the limit case pi � �� i � �� � � � �N �

kAk�kA��k� � maxi
�
�� � �� pini 


�
�

mini
�
���� cos �

ni

� � �� pini 


���� cos �
ni


�


 maxi
�
�� � �� pi

ni

�
�

mini�
�
ni

���� � ��pi
�	

�

���
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Summarizing� in the particular but important uniform case we can
compute the mesh solution by solving a symmetric� pentadiagonal� positive
de�nite system and therefore� we can use specialized algorithms� with a
computational cost of ��q arithmetic operations� namely� �q additions� �q
multiplications� and �q divisions ���	� where q is the number of unknowns�

Moreover� since the upper bound ���
 for the condition number of
the matrix A does not depend on the number of interpolation points�
such methods can be used with some con�dence�

In the general case of a non�uniform mesh� the matrix A is no longer
symmetric� and an analysis of its condition number cannot be carried out
analytically� However� several numerical experiments have shown that the
condition number is not in�uenced by the non�symmetric structure� but
does depend on the maximum number of grid points in each subinter�
val� exactly as in the symmetric case� In other words� symmetric and
nonsymmetric matrices� with the same dimension and produced by dif�
ference equations with the same largest ni� produce very close condition
numbers� Non�uniform discrete hyperbolic tension splines have in fact
been used for the graphical tests of the section ���

x�� ��D DMBVP� Problem Formulation

Let us consider a rectangular domain � � � �  where

� � f�x� y
 j a � x � b� c � y � dg

and  is the boundary of �� We consider on � a mesh of lines ! � !x	!y

with
!x � a �x� � x� � � � � � xN�� � b�

!y � c �y� � y� � � � � � yM�� � d�

which divides the domain � into the rectangles �ij � �ij �  ij where

�ij � f�x� y
 j x � �xi� xi��
� y � �yj � yj��
g
and  ij is the boundary of �ij � i � �� � � � �N � j � �� � � � �M �

Let us associate to the mesh ! the data

�xi� yj � fij 
�

f
�����
ij �

f
�����
ij �

f
�����
ij �

i � �� � � � �N � ��

i � ��N � ��

i � �� � � � �N � ��

i � ��N � ��

j � �� � � � �M � ��

j � �� � � � �M � ��

j � ��M � ��

j � ��M � ��

where

f
�r�s�
ij �

� r�sf�xi� yj 


�xr�ys
� r� s � �� ��
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We denote by C�����	 the set of all continuous functions f on � having
continuous partial and mixed derivatives up to the order � in x and y
variables� We call the problem of searching for a function S � C�����	 such
that S�xi� yj
 � fij � i � �� � � � �N��� j � �� � � � �M��� and S preserves the
shape of the initial data the shape preserving interpolation problem� This
means that wherever the data increases �decreases
 monotonically� S has
the same behaviour� and S is convex �concave
 over intervals where the
data is convex �concave
�

Evidently� the solution of the shape preserving interpolation problem
is not unique� We are looking for a solution of this problem as a biharmonic
tension spline�

De�nition �� An interpolating biharmonic spline S with two sets of ten�

sion parameters f � � pij � � j i � �� � � � �N� j � �� � � � �M � � g and

f � � qij � � j i � �� � � � �N � �� j � �� � � � �M g is a solution of the

DMBVP

��S

�x�
� �

��S

�x��y�
�

��S

�y�
�
�
pij
hi

��
��S

�x�
�
�
qij
lj

��
��S

�y�
� � ���


in each �ij � hi � xi�� � xi� lj � yj�� � yj �

pij � max�pij � pi�j��
� qij � max�qij � qi���j
�

i � �� � � � �N� j � �� � � � �M�

��S

�x�
�
�
pij
hi

��
��S

�x�
� �� x � �xi� xi��
� i � �� � � � �N� ���


y � yj � j � �� � � � �M � ��

��S

�y�
�
�
qij
lj

��
��S

�y�
� �� y � �yj � yj��
� j � �� � � � �M� ���


x � xi� i � �� � � � �N � ��

S � C�����	� ���


with the interpolation conditions

S�xi� yj
 � fij � i � �� � � � �N � �� j � �� � � � �M � �� ���


and the boundary conditions

S������xi� yj 
 �f
�����
ij �

S������xi� yj 
 �f
�����
ij �

S������xi� yj 
 �f
�����
ij �

i ���N � ��

i ��� � � � �N � ��

i ���N � ��

j ��� � � � �M � ��

j ���M � ��

j ���M � ��

���




�� B� I� Kvasov

By this de�nition an interpolating biharmonic tension spline S is a
set of the interpolating biharmonic tension functions which satisfy ���
�
match up smoothly and form a twice continuously di�erentiable function
both in x and y variables

S�r����xi � �� y
 �S�r����xi � �� y
� r � �� �� �� i � �� � � � �N�

S���s��x� yj � �
 �S���s��x� yj � �
� s � �� �� �� j � �� � � � �M�
���


C� smoothness of the interpolating hyperbolic tension splines in ���
 and
���
 was proven in �����	� The computation of the interpolating bihar�
monic tension spline reduces to a computation of in�nitely many proper
one�dimensional hyperbolic tension splines�

For all pij � qij � � the solution of ���
����
 becomes a biharmonic
spline ��	 while in the limiting case as pij � qij � � in rectangle �ij the
spline S turns into a linear function separately by x and y� and obviously
preserves the shape properties of the data on �ij � By increasing one or
more of tension parameters the surface is pulled towards an inherent shape
while at the same time keeping its smoothness� Thus� the DMBVP gives
an approach to the solution of the shape preserving interpolation problem�

x�� Finite�Di�erence Approximation of DMBVP

For practical purposes� it is often necessary to know the values of the so�
lution S of a DMBVP only over a prescribed grid instead of its global
analytic expression� In this section� we consider a �nite�di�erence ap�
proximation of the DMBVP� This provides a linear system whose solution
is called a mesh solution� It turns out that the mesh solution is not a
tabulation of S but is supposed to be some approximation of it�

Let ni�mj � IN� i � �� � � � �N � j � �� � � � �M � be given such that
hi�ni � lj�mj � h� We are looking for a mesh function

�
uik�jl j k � ��� � � � � ni��� i � �� � � � �N � l � ��� � � � �mj��� j � �� � � � �M

�
�

satisfying the di�erence equations

�
��
� � ����� ���

� �
�
pij
hi

��

�� �
�
qij
lj

��

��

�
uik�jl � �� ��


k ��� � � � � ni � �� i � �� � � � �N � l � �� � � � �mj � �� j � �� � � � �M�

�
��
� �

�
pij
hi

��

��

�
uik�jl � �� ���


k � �� � � � � ni � �� i � �� � � � �N � l �

�
�� if j � �� � � � �M � ��
��mM if j �M �
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�
��
� �

�
qij
lj

��

��

�
uik�jl � �� ���


k �

�
�� if i � �� � � � �N � ��
�� nN if i � N �

� l � �� � � � �mj � �� j � �� � � � �M�

where

��uik�jl �
ui�k���jl � �uik�jl � ui�k���jl

h�
�

��uik�jl �
uik�j�l�� � �uik�jl � uik�j�l��

h�
�

The smoothness conditions ���
 are changed to

ui���ni���jl �ui��jl�

ui���ni�����jl � ui���ni�����jl

�h
�
ui��jl � ui����jl

�h
�

��ui���ni���jl ���ui��jl�

���


i � �� � � � �N� l � �� � � � �mj � j � �� � � � �M�

uik�j���mj��
�uik�j��

uik�j���mj���� � uik�j���mj����

�h
�
uik�j� � uik�j���

�h
�

��uik�j���mj��
���uik�j��

���


k � �� � � � � ni� i � �� � � � �N� j � �� � � � �M�

Conditions ���
 and ���
 take the form

ui��j� �fij �

ui��M�mM
�fi�M���

uN�nN�j� �fN���j�

uN�nN�M�mM
�fN���M���

���


i � �� � � � �N� j � �� � � � �M�

and

��u���j� �f
�����
�j � j � �� � � � �M �

��uN�nN�j� �f
�����
N���j� j � �� � � � �M �

��ui���� �f
�����
i� � i � �� � � � �N �

��ui��M�mM
�f

�����
i�M��� i � �� � � � �N �

����u����� �f
�����
�� �

����u���M�mM
�f

�����
��M���

��u���M�mM
�f

�����
��M���

��uN�nN�M�mM
�f

�����
N���M���

��uN�nN��� �f
�����
N�����

��uN�nN�M�mM
�f

�����
N���M���

����uN�nN��� �f
�����
N�����

����uN�nN�M�mM
�f

�����
N���M���

���
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x� Algorithm
To solve �nite�di�erence system ��
����
 we propose �rst to �nd its so�
lution on the re�nement of the main mesh !� The latter can be achieved
in the four steps�

F i r s t s t e p� Evaluate all tension parameters pij on the lines
y � yj � j � �� � � � �M � � and qij on the lines x � xi� i � �� � � � �N � � by
one of ��D algorithms for automatic selection of shape control parameters�
see� e�g�� ���������	� etc�

S e c o n d s t e p� Construct discrete hyperbolic tension splines ��	 in
the x direction by solving the M �� linear systems ���
� As a result� one
�nds the values of the mesh solution on the lines y � yj � j � �� � � � �M ��
of the mesh ! in x direction�

T h i r d s t e p� Construct discrete hyperbolic tension splines in
the y direction by solving the N �� linear systems ���
� This gives us the
values of the mesh solution on the lines x � xi� i � �� � � � �N � � of the
mesh ! in y direction�

F o u r t h s t e p� Construct discrete hyperbolic tension splines

in the x and y directions interpolating the data f
�����
ij � i � ��N � ��

j � �� � � � �M � �� and f
�����
ij � i � �� � � � �N � �� j � ��M � �� on the

boundary  � This gives us the values

��u���jl� ��uN�nN�jl� l � �� � � � �mj � j � �� � � � �M�

��uik���� ��uik�M�mM
� k � �� � � � � ni� i � �� � � � �N�

���


Now the system of di�erence equations ��
����
 can be substantially
simpli�ed by eliminating the unknowns

uik�jl� k � ��� ni � �� i � �� � � � �N� l � �� � � � �mj � j � �� � � � �M�

uik�jl� k � �� � � � � ni� i � �� � � � �N� l � ���mj � �� j � �� � � � �M�

using relations ���
� ���
� and the boundary values ���
�
As a result one obtains a system with �ni � �
�mj � �
 di�erence

equations and the same number of unknowns in each rectangle �ij � i �
�� � � � �N � j � �� � � � �M � This linear system can be e�ciently solved by the
SOR algorithm or applying �nite�di�erence schemes in fractional steps on
single� or multi�processor computers�

x�� SOR Iterative Method

Using a piecewise linear interpolation of the mesh solution from the main
mesh ! onto the re�nement let us de�ne a mesh function

fu���ik�jl j k � �� � � � � ni� i � �� � � � �N� l � �� � � � �mj � j � �� � � � �Mg� ���
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In each rectangle �ij � i � �� � � � �N � j � �� � � � �M � the di�erence
equation ��
 can be rewritten in componentwise form

uik�jl �
�

�ij

�
�ij
�
ui�k���jl � ui�k���jl

�
� �ij

�
uik�j�l�� � uik�j�l��

�
� �

�
ui�k���j�l�� � ui�k���j�l�� � ui�k���j�l�� � ui�k���j�l��

�
� uik�j�l�� � uik�j�l�� � ui�k���jl � ui�k���jl

�
�

���


where

�ij � ����

�
pij
ni

��

��

�
qij
mj

��

� �ij � �

�
pij
ni

��

� �ij � �

�
qij
mj

��

�

Now using ���
 we can write down SOR iterations to obtain a numer�
ical solution on the re�nement

uik�jl �
�

�ij

�
�ij
�
u
�����
i�k���jl � u

���
i�k���jl

�
� �ij

�
u
�����
ik�j�l�� � u

���
ik�j�l��

�
� �

�
u
�����
i�k���j�l�� � u

���
i�k���j�l�� � u

�����
i�k���j�l�� � u

���
i�k���j�l��

�
� u

�����
ik�j�l�� � u

���
ik�j�l�� � u

�����
i�k���jl � u

���
i�k���jl

�
�

u
�����
ik�jl �u���ik�jl � ��uik�jl � u

���
ik�jl
� � � � � �� � � �� �� � � � �

k ��� � � � � ni � �� i � �� � � � �N� l � �� � � � �mj � �� j � �� � � � �M�

Note that outside the domain� the extra unknowns u�����jl� uN�nN���jl�
l � �� � � � �mj � j � �� � � � �M � and uik������ uik�M�mM��� k � �� � � � � ni�
i � �� � � � �N � are eliminated using ���
 and are not part of the iterations�

x�� Method of Fractional Steps

The system of di�erence equations obtained in section � can be e�ciently
solved by the method of fractional steps ���	� Using the initial approxima�
tion ���
 let us consider in each rectangle �ij � i � �� � � � �N � j � �� � � � �M �
the following splitting scheme

un���� � un

�
� ���u

n���� ����u
n � ��

un�� � un����

�
� ���u

n�� ����u
n���� � ��

��
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where

��� ��
�
� � p��� ��� � ��

� � q��� ��� � ����� p �
�pij
hi

��
� q �

�qij
lj

��
�

u �
�
uik�jl j k � �� � � � � ni � �� i � �� � � � �N �

l � �� � � � �mj � �� j � �� � � � �M
�
�

Eliminating from here the fractional step un���� yields the following
scheme in whole steps� equivalent to the scheme ��
�

un�� � un

�
���������
u

n�������u
n�� �������u

n�����
��u

n
 � �� ���


It follows from here that the scheme ���
 and the equivalent scheme
��
 possess the property of complete approximation ���	 only in the case if

������ � ��
�� or pij � qij � � for all i� j�

Let us prove the unconditional stability of the scheme ��
 or� which
is equivalent� the scheme ���
� Using usual harmonic analysis ���	 assume
that

un � 
ne
i�z � un���� � 
n����e

i�z � z � k�
x� xi
hi

� k�
y � yj
lj

� ���


Substituting equations ���
 into equations ��
 we obtain the ampli�cation
factors

� �

n����


n
�

�� a�a�
�� p

p
�a� � a��

� � �

n��


n����
�

�� a�a�
�� q

p
�a� � a��

�

 � �� �
��� a�a�
�

��� p
p
�a� � a��
�� � q

p
�a� � a��


�

where

a� �� �
p
�

h�
sin�

�
k�h

�

�

hi

�
� k� � �� � � � � ni � �� nih � hi�

a� �� �
p
�

h�
sin�

�
k�h

�

�

lj

�
� k� � �� � � � �mj � �� mjh � lj �

It follows from here that

� �  � ��� a�a�
�

�� � a��
�� � a��

�
�
�� a�a�
� � a�a�

��

� �

for any � � This proves the unconditional stability of the scheme ��
�
At each fractional step in ��
 one has to solve a linear system with

a symmetric positive de�nite pentadiagonal matrix� This is much cheaper
than directly solving the linear system ��
� However� in general the
scheme ��
 has the property of incomplete approximation ���	� For this
reason� in iterations we have to use small values of the iteration parameter
� � e�g��

p
��h� � const�
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x��� Graphical Examples

The aim of this �nal section is to illustrate the tension features of discrete
hyperbolic and biharmonic tension splines with some �famous
 examples�
Before� we want to notice that the continuous form Ui of our solution
given in ���
 has the good shape�preserving properties of cubics �see e�g�
���	
 in the sense that Ui is convex �concave
 in �xi� xi��	 if and only if
mi�j � � �� �
� j � �� �� and has at most one in�ection point in �xi� xi��	�
In order to preserve the shape of the data� we therefore simply have to
analyze the values �iui�� and �iui�ni and increase the tension parameters if
necessary� All the strategies proposed for the automatic choice of tension
parameters in continuous hyperbolic tension spline interpolation can be
used in our discrete context� see e�g� ���� ��	�

In our �rst example we have interpolated the radio chemical data
reported in Table �� The e�ects of changing the tension values pi are
depicted in Figs� ���� We have adopted a non�uniformmesh� assigning the
same number of points ���
 to each interval of the main mesh� and imposed
natural end conditions� that is� following formulas ���
� m� �mN�� � ��

Table �� Radio chemical data�

xi ���� ��� ��� �� ���

fi � �������E�� ������E�� ������� �������

xi �� �� �� ��

fi �������� ������� �������� ��������

Fig� � is obtained setting pi � �� that is considering the discrete cubic
spline interpolating the data� In Fig � a new discrete interpolant with
p� � p� � ���� pi � ��� i � �� � � � � �� is displayed for the same data� and
the stretching e�ect of the increase in tension parameters is evident�

In the second example we have taken Akima�s data of Table � and
constructed discrete interpolants with �� points for each interval� with nat�
ural end conditions m� � mN�� � �� Fig� � left shows the plot produced
by a uniform choice of tension factors� namely pi � �� The right part of
the same �gure shows a second mesh solution� which perfectly reproduces
the data shape� where we have set p	 � p
 � p� � �� while the remaining
pi are unchanged�

Table �� Akima�s data ��	�

xi � � � � �  � �� �� �� ��

fi �� �� �� �� �� �� ���� �� �� �� �

In ��D case the approach developed in this paper was tested on a
number of numerical examples� Because of space limitations we consider
here only some of them� The initial data �xi� yj � "fij 
 in Fig� � was obtained
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Fig� �� Akima�s data with natural end conditions�
Left� Discrete interpolating cubic spline �pi � �
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Right� discrete hyperbolic spline with p	 � p
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by taking Akima�s data in Table � both in x and y directions and using
the formula "fij � fi�fj � As shown in Fig� � the usual discrete biharmonic
spline does not preserve the monotonicity and convexity properties of the
initial data� On the other hand the discrete biharmonic tension spline in
Fig� � preserves the data shape and gives a visually smooth surface�

The exponential function

f�x� y
 �
�

�
e�

�

�
��x������y����� �

�

�
e�� �

��
�x����� �

��
�y����

� �

�
e���x������y����� �

�

�
e�

�

�
��x������y�����

���


has been used in ����	 to obtain a scattered data� A graph of the function
���
 with the data points marked by circles is shown in Fig� �� A projection
of the data points on xy plane and a surface obtained by joining the data
points by pieces of straight lines are given in Fig� � Fig� � presents the
resulting biharmonic surface under tension�

The initial topographical data in the next test is shown in Fig� ���
Fig� �� is obtained by setting all tension parameters to zero� that is� con�
sidering usual discrete biharmonic spline interpolating the data� It gives
oscillations which are unnatural for the data� The situation can be sub�
stantially improved by using biharmonic tension spline with automatic
selection of the shape control parameters� The resulting discrete tension
spline in Fig� �� has no oscillations and simultaneously keeps a visually
smooth surface�

A reconstruction of the jet�s surface is shown in Figs� ������ The
initial data was de�ned as a set of �� pointwise�assigned non�intersecting
and in general curvilinear sections of a ��D body� The number of points
varied from section to section with a total of ��� points� Fig� �� gives the
initial data� Figs� �� and �� show the biharmonic surfaces without tension
and with #optimal$ tension parameters� respectively�

As a last numerical test� we tried to reconstruct the surface of a
#Viking ship$� The initial data� which the author obtained from Professor
T� Lyche of the Oslo University� was de�ned pointwise in the form of the
envelopes of the sides and the keel of the boat� as well as six ribs� ��D view
of the data is given in Fig� ��� In Figs� �� and � the resulting biharmonic
tension surface is given for very large and #optimal$ tension parameters
with a mesh of lines ���	 ����

Applying the SOR iterative method or using the method of fractional
steps we obtain practically the same results� However the method of frac�
tional steps converges about three times faster than the SOR iterations�
But the operation count at each step of the SOR iterative method is ap�
proximately three times less than that in the method of fractional steps�
Therefore� the performance of both methods is very similar� They can be
also easily modi�ed for use on parallel processor computers�
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Fig� ��� The biharmonic surface for very large tension parameters�
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Fig� ��� The resulting biharmonic surface with �optimal� tension parameters�
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